Skip to main content
Log in

Features of Initiation and Combustion of Hf/PTFE Reactive Materials

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The optimum composition of components in the Hf/PTFE system was determined by thermodynamic calculation. The composition 65Hf/35PTFE (in wt %) was chosen based on the maximum adiabatic combustion temperature (Tad = 2381°C) and the fraction of condensed products (70 wt %). The study on the ignition of compositions in argon, air, and vacuum showed that in the latter case, the intensity of ignition decreases. The maximum combustion temperature and rate in argon were found to be 2250°C and 4.5 mm/s for compositions with 10 and 15 wt % Al. XRD analysis revealed the formation of a monophase HfC product in all compositions. Shock-wave loading of compositions with a steel plate at an impact velocity of 1 km/s showed the absence of exothermic reaction in the 65Hf/35PTFE composition. Increasing the impact velocity to 1.5 km/s resulted in an exothermic reaction in this composition. The maximum yield of HfC under shock-wave loading was achieved in the composition 62Hf/33PTFE/5Al, indicating its high reactivity. Thus, this composition is the most optimal for use as a reactive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Hastings, D.L. and Dreizin, E.L., Reactive structural materials: preparation and characterization, Adv. Eng. Mater., 2017, vol. 20, no. 1, p. 1700631. https://doi.org/10.1002/adem.201700631

    Article  CAS  Google Scholar 

  2. He, W., Liu, P.J., He, G.Q., Gozin, M., and Yan, Q.L., Highly reactive metastable intermixed composites (MICs): preparation and characterization, Adv. Mater., 2018, vol. 30, no. 41, p. 1706293. https://doi.org/10.1002/adma.201706293

    Article  CAS  Google Scholar 

  3. Glavier, L., Taton, G., Ducere, J., Baijot, V., Pinon, S., Calais, T., Esteve, A., Rouhani, M.D., and Rossi, C., Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combust. Flame, 2015, vol. 162, no. 5, pp. 1813–1820. https://doi.org/10.1016/j.combustflame.2014.12.002

    Article  CAS  Google Scholar 

  4. Li, Y., Wang, Z., Jiang, C., and Niu, H., Experimental study on impact-induced reaction characteristics of PTFE/Ti composites enhanced by W particles, Materials, 2017, vol. 10, no. 2, p. 175. https://doi.org/10.3390/ma10020175

    Article  CAS  Google Scholar 

  5. Feng, B., Qiu, C.L., Zhang, T.H., Hu, Y.F., Li, H.G., and Xu, B.C., Sensitivity of Al-PTFE upon low-speed impact, Propellants Explos. Pyrotech., 2019, vol. 44, no. 5, pp. 630–636. https://doi.org/10.1002/prep.201800335

    Article  CAS  Google Scholar 

  6. Xiao, J.G., Zhang, X.P., Guo, Z.X., and Wang, H.F., Enhanced damage effects of multi-layered concrete target produced by reactive materials liner, Propellants Explos. Pyrotech., 2018, vol. 43, no. 9, pp. 955–961. https://doi.org/10.1002/prep.201800105

    Article  CAS  Google Scholar 

  7. Zheng, Y.F., Su, C.H., Guo, H.G., Yu, Q.B., and Wang, H.F., Chain damage effects of multi-spaced plates by reactive jet impact, J. Def. Technol., 2021, vol. 17, no. 2, pp. 393–404. https://doi.org/10.1016/j.dt.2020.02.008

    Article  Google Scholar 

  8. Daniels, A., Baker, E., DeFisher, S., Pham, J., and Ng, K., Bam Bam: Large scale unitary demolition warheads, Proc. 23rd Int. Symp. on Ballistics, Tarragona, Spain, 2007.

  9. Advanced Energetic Materials, Washington, USA: National Academies Press, 2004, pp. 1–23.

  10. Leslie, R.B. and Brian, B., US Patent 20070056462, 2007.

  11. Mock, W.Jr. and Holt, W.H., Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders, shock compression condense matter, AIP Conf. Proc., 2006, vol. 845, pp. 1097–1100. https://doi.org/10.1063/1.2263514

    Article  CAS  Google Scholar 

  12. Chen, S., Tang, D.Y., Zhang, X.X., Lyu, J.Y., He, W., Liu, P., and Yan, Q.-L., Enhancing the combustion performance of metastable Al@AP/PVDF nanocomposites by doping with graphene oxide, Engineering, 2020, vol. 6, no. 9, pp. 1019–1027. https://doi.org/10.1016/j.eng.2020.02.014

    Article  CAS  Google Scholar 

  13. McCollum, J., Pantoya, M.L., and Iacono, S.T., Catalyzing aluminum particle reactivity with a fluorine oligomer surface coating for energy generating applications, J. Fluorine Chem., 2015, vol. 180, pp. 265–271. https://doi.org/10.1016/j.jfluchem.2015.10.010

    Article  CAS  Google Scholar 

  14. Guo, M., Wang, Y., Wang, H., and Xiao, J., The mechanical and energy release performance of THV-based reactive materials, Materials, 2022, vol. 15, no. 17, p. 5975. https://doi.org/10.3390/ma15175975

    Article  CAS  Google Scholar 

  15. Ding, L., Zhou, J., Tang, W., Ran, X., and Hu, Y., Impact energy release characteristics of PTFE/Al/CuO reactive materials measured by a new energy release testing device, Polymers, 2019, vol. 11, no. 1, p. 149. https://doi.org/10.3390/polym11010149

    Article  CAS  Google Scholar 

  16. Yu, Z.S., Fang, X., Gao, Z.R., Wang, H.X., Huang, J.Y., Yao, M., and Li, Y.C., Mechanical and reaction properties of Al/TiH2/PTFE under quasi-static compression, J. Adv. Eng. Mater., 2018, vol. 20, no. 7, p. 1800019. https://doi.org/10.1002/adem.201800019

    Article  CAS  Google Scholar 

  17. Raftenberg, M.N., Mock, W.Jr., and Kirby, G.C., Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture, Int. J. Impact Eng., 2008, vol. 35, no. 12, pp. 1735–1744. https://doi.org/10.1016/j.ijimpeng.2008.07.041

    Article  Google Scholar 

  18. Wu, J.X., Fang, X., Gao, Z.R., Wang, H.X., Huang, J.Y., Wu, S.Z., and Li, Y.C., Investigation on mechanical properties and reaction characteristics of Al–PTFE composites with different Al particle size, Adv. Mater. Sci. Eng., 2018, vol. 2018, pp. 1–10. https://doi.org/10.1155/2018/2767563

    Article  CAS  Google Scholar 

  19. Feng, B., Fang, X., Li, Y.C., Wang, H.X., Mao, Y.M., and Wu, S.Z., An initiation phenomenon of Al–PTFE under quasi-static compression, Chem. Phys. Lett., 2015, vol. 637, pp. 38–41. https://doi.org/10.1016/j.cplett.2015.07.056

    Article  CAS  Google Scholar 

  20. Chen, C., Tang, E., Zhu, W., Han, Y., and Gao, Q., Modified model of Al/PTFE projectile impact reaction energy release considering energy loss, Exp. Therm Fluid Sci., 2020, vol. 116, p. 110132. https://doi.org/10.1016/j.expthermflusci.2020.110132

    Article  CAS  Google Scholar 

  21. Wang, L., Liu, J., Li, S., and Zhang, X., Investigation on reaction energy, mechanical behavior and impact insensitivity of W–PTFE–Al composites with different W percentage, Mater. Des., 2016, vol. 92, pp. 397–404. https://doi.org/10.1016/j.matdes.2015.12.045

    Article  CAS  Google Scholar 

  22. Wu, J., Wang, H., Fang, X., Li, Y., Mao, Y., Yang, L., Yin, Q., Wu, S., Yao, M., and Song, J., Investigation on the thermal behavior, mechanical properties and reaction characteristics of Al–PTFE composites enhanced by Ni particle, Materials, 2018, vol. 11, no. 9, p. 1741. https://doi.org/10.3390/ma11091741

    Article  CAS  Google Scholar 

  23. Zhang, J., Huang, J., Li, Y., Liu, Q., Yu, Z., Wu, J., Gao, Z., Wu, S., Kui, J., and Song, J., sintering reaction and pyrolysis process analysis of Al/Ta/PTFE, Polymers, 2019, vol. 11, no. 9, p. 1469. https://doi.org/10.3390/polym11091469

    Article  CAS  Google Scholar 

  24. Huang, J., Fang, X., Wu, S., Yang, L., Yu, Z., and Li, Y., Mechanical response and shear-induced initiation properties of PTFE/Al/MoO3 reactive composites, Materials, 2018, vol. 11, no. 7, p. 1200. https://doi.org/10.3390/ma11071200

    Article  CAS  Google Scholar 

  25. Yu, Z., Fang, X., Li, Y., Wu, J., Wu, S., Zhang, J., Ren, J., Zhong, M., Chen, L., and Yao, M., Investigation on the reaction energy, dynamic mechanical behaviors, and impact-induced reaction characteristics of PTFE/Al with different TiH2 percentages, Materials, 2018, vol. 11, no. 10, p. 2008. https://doi.org/10.3390/ma11102008

    Article  CAS  Google Scholar 

  26. Shiryaev, A.A., Thermodynamics of SHS: modern approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, pp. 351–362.

    CAS  Google Scholar 

  27. Saikov, I.V., Seropyan, S.A., Malakhov, A.Yu., Saikova, G.R., Denisov, I.V., and Petrov, E.V., Energetic materials based on W/PTFE/Al: thermal and shock-wave initiation of exothermic reactions, Metals, 2021, vol. 11, no. 9, p. 1355. https://doi.org/10.3390/met11091355

    Article  CAS  Google Scholar 

  28. Zakaryan, M.K., Zurnachyan, A.R., Amirkhanyan, N.H., Kirakosyan, H.V., Antonov, M., Rodriguez, M.A., and Aydinyan, S.V., Novel pathway for the combustion synthesis and consolidation of boron carbide, Materials, 2022, vol. 15, no. 14, p. 5042. https://doi.org/10.3390/ma15145042

    Article  CAS  Google Scholar 

  29. Seropyan, S.A., Saikov, I.V., Andreev, D.E., Saikova, G.R., and Alymov, M.I., Reactive Ni–Al-based materials: strength and combustion behavior, Metals, 2021, vol. 11, no. 6, p. 949. https://doi.org/10.3390/met11060949

    Article  CAS  Google Scholar 

  30. Maksimov, B.N., Barabanov, V.G., Serushkin, I.L., Zotikov, V.S., Semerikova, I.A., Stepanov, V.P., Sagaidakova, N.G., and Kaurova, G.I., Promyshlennye ftororganicheskie producty (Industrial Organofluorine Products), Saint Petersburg: Khimiya, 1990, 2nd ed., 541 p.

  31. Ripan, R. and Chetyanu, I., Neorganicheskaya khimiya. Khimiya metallov (Inorganic Chemistry. Chemistry of Metals), Moscow: Mir, 1972, vol. 2, 871 p.

  32. Archer, G. and Hildebrand, J.H., The solubility and entropy of solution of carbon tetrafluoride and sulfur hexafluoride in nonpolar solvents, J. Phys. Chem., 1963, vol. 67, no. 9, pp. 1830–1833. https://doi.org/10.1021/j100803a021

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This research was performed by using the set of modern scientific instruments available for multiple accesses at the Center of Shared Services, Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-08-00640-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Seropyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikov, I.V., Seropyan, S.A., Saikova, G.R. et al. Features of Initiation and Combustion of Hf/PTFE Reactive Materials. Int. J Self-Propag. High-Temp. Synth. 32, 200–207 (2023). https://doi.org/10.3103/S1061386223030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386223030081

Keywords:

Navigation