Skip to main content
Log in

High-Temperature Interaction between Carbon Fibers and Cu–Ag Eutectic Alloy

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

High-temperature interaction of 30 wt % Cu–70 wt % Ag eutectic alloy with carbon fibers was studied. It was shown that Cu–Ag drops coated with carbon film are formed on the surface of carbon fibers. Carbon atoms dissolved in the molten Cu–Ag phase precipitated out on the drop surface at a lower temperature, thus resulting in growing few-layer graphene. Cu–Ag–carbon fibers composites sintered at 670°C was shown to represent a porous structure containing spherical Cu–Ag particles and carbon fibers. It was revealed that as C is added, the electrical resistivity of sintered samples decreases. Raman spectra of sintered composites containing 3.0 and 6.3 wt % C showed the formation of a multilayer graphene coating with a disordered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Joulain, A., Audurier, V., Gadaud, P., Bonneville, J., Azin, C., Lu, Y., and Silvain, J.-F., Correlation of the mechanical properties of Cu/C composite materials with the chemistry of Cu single bond C interfacial zone, Mater. Charact., 2021, vol. 179, p. 111364. https://doi.org/10.1016/j.matchar.2021.111364

    Article  CAS  Google Scholar 

  2. Geffroy, P.M. and Silvain, J.F., Structural and thermal properties of hot-pressed Cu/C matrix composites materials used for the thermal management of high-power electronic devices, Mater. Sci. Forum, 2007, vols. 534–536, pp. 1505–1508. https://doi.org/10.4028/www.scientific.net/MSF.534-536.1505

    Article  Google Scholar 

  3. Barani, Z., Mohammadzadeh, A., Geremew, A., Huang, C.-Y., Coleman, D., Mangolini, L., Kargar, F., and Balandin, A.A., Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles, Adv. Funct. Mater., 2020, vol. 30, no. 8, pp. 1–11. https://doi.org/10.1002/adfm.201904008

    Article  CAS  Google Scholar 

  4. Deng, D., Jin, Y., Cheng, Y., Qi, T., and Xiao, F., Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 9, pp. 3839–3846. https://doi.org/10.1021/am400480k

    Article  CAS  Google Scholar 

  5. Gawande, M.B., Goswami, A., Felpin, F.X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., and Varma, R.S., Cu and Cu-based nanoparticles: synthesis and applications in catalysis, Chem. Rev., 2016, vol. 116, no. 6, pp. 3722–3811. https://doi.org/10.1002/chin.201619194

    Article  CAS  Google Scholar 

  6. Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D’Alessio, M., Zambonin, P.G., and Traversa, E., Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem. Mater., 2005, vol. 17, no. 21, pp. 5255–5262. https://doi.org/10.1021/CM0505244

    Article  CAS  Google Scholar 

  7. Ruparelia, J. P., Chatterjee, A.K., Duttagupta, S.P., and Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 2008, vol. 4, no. 3, pp. 707–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  Google Scholar 

  8. Chu, K., Liu, Z., Jia, C., Chen, H., Liang, X., Gao, W., Tian, W., and Guo, H., Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles, J. Alloys Compd., 2010, vol. 490, nos. 1–2, pp. 453–458. https://doi.org/10.1016/j.jallcom.2009.10.040

    Article  CAS  Google Scholar 

  9. Hirohiko, O., Yoshida, T., and Yoshimoto, O., A technique for brazing graphite/graphite and stainless steel/high-carbon steel joints, Weld. Res. Suppl., 1994, vol. 73, pp. 249–255.

    Google Scholar 

  10. Han, X., Huang, Y., Gao, Q., Yu, M., and Chen, X., High thermal conductivity and mechanical properties of nanotube@Cu/Ag@graphite/aluminum composites, Ind. Eng. Chem. Res., 2018, vol. 57, no. 31, pp. 10365–10371. https://doi.org/10.1021/acs.iecr.8b01567

    Article  CAS  Google Scholar 

  11. Kamardin, A., Derman, M.N.B., Rahmat, A., and Muhamad, W.Z.A.W., Profiling the thermal properties of Cu–Ag/CF composites by using JMP Pro, AIP Conf. Proc., 2013, p. 020002. https://doi.org/10.1063/1.5054201

  12. Jiang, L., Lu, X., and Zheng, X., Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes, J. Mater. Sci. Mater. Electron., 2014, vol. 25, pp. 174–180. https://doi.org/10.1007/s10854-013-1569-4

    Article  CAS  Google Scholar 

  13. Xu, J., Wei, X.-W., Song, X.-J., Lu, X.-J., Ji, C.-C., Ni, Y.-H., and Zhao, G.-C., Synthesis and electrocatalytic activity of multi-walled carbon nanotubes/Cu–Ag nanocomposites, J. Mater. Sci., 2007, vol. 42, pp. 6972–6976. https://doi.org/10.1007/s10853-006-1307-x

    Article  CAS  Google Scholar 

  14. Pragatheeswaran, A., Ravi, R., and Bakshi, S.R., Microstructural and morphological changes during ball milling of copper–silver–graphite flake mixtures, Adv. Powder Technol., 2019, vol. 30, no. 11, pp. 2759–2767. https://doi.org/10.1016/j.apt.2019.08.023

    Article  CAS  Google Scholar 

  15. Nelyub, V.A., Fedorov, S.Yu., and Malysheva, G.V., Investigation of structure and properties of elemental carbon fibers with metal coatings, Maтepиaлoвeдeниe, 2021, no. 1, pp. 7–11.

  16. Liang, B. and Zhang, G., Electrical sliding tribological behavior of Cu/Ag/graphite composite coating, Rare Met. Mater. Eng., 2016, vol. 45, pp. 1961–1966. https://doi.org/10.1016/S1875-5372(16)30154-0

    Article  CAS  Google Scholar 

  17. Weltsch, Z., Lovas, A., Takács, J., Cziráki, Á., Tichy, G., Toth, A.L., and Illés, L., Wetting ability of Ag based molten alloys on graphite substrate, Solid State Phenom., 2010, vol. 159, pp. 117–120. https://doi.org/10.4028/www.scientific.net/SSP.159.117

    Article  CAS  Google Scholar 

  18. Zhang, L. and Meng, L., Microstructure and properties of Cu–Ag, Cu–Ag–Cr and Cu–Ag–Cr–RE alloys, Mater. Sci. Technol., 2003, vol. 19, no. 1, pp. 75–79. https://doi.org/10.1179/026708303225008617

    Article  CAS  Google Scholar 

  19. Karpov, A.V., Morozov, Yu.G., Bunin, V.A., and Borovinskaya, I.P., Influence of yttrium oxide on the electrical resistivity of SHS nitride ceramics, Неорганические материалы, 2002, vol. 38, no. 6, pp.762–766.

    Google Scholar 

  20. Shikin, A.M., Adamchuk, V.K., and Rider, K.Kh., Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers, Физика твердого тела, 2009, vol. 51, no. 11, pp. 2251–2260. https://doi.org/10.7868/S0044451017110050

  21. Serway, R.A., Principles of Physics, Fort Worth, Texas; London: Saunders College Pub, 1998, 2nd ed., p. 602.

    Google Scholar 

  22. Wang, S.-S., Zhang, Y.-W., and Yao, D.-W., Microstructure and properties of Cu–0.3 wt % Ag alloy ultra-fine wires, Miner. Met. Mater. Ser., 2019, pp 629–635. https://doi.org/10.1007/978-3-030-05861-6_60

  23. Fan, Y., Li, M., Jia, X., Li, L., Zhang, Q., Gao, E., Geng, D., and Hu, W., Self-assembly graphene arrays on a liquid Cu–Ag alloy, Chem. Mater., 2021, vol. 33, no. 22, pp. 8649–8655. https://doi.org/10.1021/acs.chemmater.1c02390

    Article  CAS  Google Scholar 

  24. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 2010, vol. 22, no. 35, pp. 3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sytschev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sytschev, A.E., Vadchenko, S.G., Busurina, M.L. et al. High-Temperature Interaction between Carbon Fibers and Cu–Ag Eutectic Alloy. Int. J Self-Propag. High-Temp. Synth. 31, 188–194 (2022). https://doi.org/10.3103/S1061386222040112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222040112

Keywords:

Navigation