Skip to main content
Log in

Abstract

SHS reaction in non-activated and mechanically activated (Ti + 2B) + x(Fe + Co + Cr + Ni + Al) systems (x = 0–80 wt %) was explored by XRD, SEM, and granulometric analyses aiming at the synthesis of HEA-matrix TiB2 composite. The reaction in non-activated mixtures yielded integral samples of HEA–TiB2 cermet. Reaction in activated mixtures yielded highly porous brittle products. Combustion temperature, burning velocity, and the size of TiB2 grains in resultant material were found to decrease with increasing x. Our results may turn useful to those engaged in R and D of new cermet composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kochetov, N.A. and Vadchenko, S.G., Effect of the time of mechanical activation of a Ti + 2B mixture on combustion of cylindrical samples and thin foils, Combust., Explos. Shock Waves, 2015, vol. 51, no. 4, pp. 467–471. https://doi.org/10.1134/S0010508215040103

    Article  Google Scholar 

  2. Vadchenko, S.G., Gas release during combustion of Ti + 2B films: Influence of mechanical alloying, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 2, pp. 90–93. https://doi.org/10.3103/S1061386215020107

    Article  CAS  Google Scholar 

  3. Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  4. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  5. Li, D.Y. and Zhang, Y., The ultrahigh Charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 2016, vol. 70, pp. 24–28. https://doi.org/10.1016/j.intermet.2015.11.002

    Article  CAS  Google Scholar 

  6. Ji, W., Fu, Z., Wang, W., Wang, H., Zhang, J., Wang, Y., and Zhang, F. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy, J. Alloys Compd., 2014, vol. 589, pp. 61–66. https://doi.org/10.1016/j.jallcom.2013.11.146

    Article  CAS  Google Scholar 

  7. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O., A fracture-resistant high-entropy alloy for cryogenic applications, Science, 2014, vol. 345, no. 6201, pp. 1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  8. Gali, A. and George, E.P., Tensile properties of high- and medium-entropy alloys, Intermetallics, 2013, vol. 39, pp. 74–78. https://doi.org/10.1016/j.intermet.2013.03.018

    Article  CAS  Google Scholar 

  9. Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdona, T.G., Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng., 2017, vol. 685, pp. 342–348. https://doi.org/10.1016/j.msea.2017.01.016

    Article  CAS  Google Scholar 

  10. Kilmametov, A., Kulagin, R., Mazilkin, A, Seils, S., Boll, T., Heilmaier, M., and Hahn, H., High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy, Scr. Mater., 2019, vol. 158, pp. 29–33. https://doi.org/10.1016/j.scriptamat.2018.08.031

    Article  CAS  Google Scholar 

  11. Bhattacharjee, P.P., Sathiaraj, G.D., Zaid, M., Gatti, J.R., Lee, C., Tsai, C.-W., and Yeh, J.-W., Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd., 2014, vol. 587, pp. 544–552. https://doi.org/10.1016/j.jallcom.2013.10.237

    Article  CAS  Google Scholar 

  12. Gu, J., Ni, S., Liu, Y., and Song, M., Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment, Mater. Sci. Eng. A, 2019, vol. 755, pp. 289–294. https://doi.org/10.1016/j.msea.2019.04.025

    Article  CAS  Google Scholar 

  13. Rogachev, A.S., Vadchenko, S.G., Kochetov, N.A., Rouvimov, S., Kovalev, D.Yu., Shchukin, A.S., Moskovskikh, D.O., Nepapushev, A.A., and Mukasyan, A.S., Structure and properties of equiatomic CoCrFeNiMn alloy fabricated by high-energy ball milling and spark plasma sintering, J. Alloys Compd., 2019, vol. 805, pp. 1237–1245. https://doi.org/10.1016/j.jallcom.2019.07.195

    Article  CAS  Google Scholar 

  14. Kochetov, N.A., Rogachev, A.S., Shchukin, A.S., Vadchenko, S.G., and Kovalev, I.D., Mechanical alloying with the partial amorphization of the Fe–Cr–Co–Ni–Mn multicomponent powder mixture and its spark plasma sintering to produce a compact high-entropy material, Russ. J. Non-Ferrous Met., 2019, vol. 60, no. 3, pp. 268–273. https://doi.org/10.3103/S106782121903009X

    Article  Google Scholar 

  15. Rogachev, A.S., Gryadunov, A.N., Kochetov, N.A., Schukin, A.S., Baras, F., and Politano, O., High-entropy-alloy binder for TiC-based cemented carbide by SHS method, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 3, pp. 196–198. https://doi.org/10.3103/S1061386219030117

    Article  Google Scholar 

  16. Rogachev, A.S., Vadchenko, S.G., Kochetov, N.A., Kovalev, D.Yu., Kovalev, I.D., Shchukin, A.S., Gryadunov, A.N., Baras, F., and Politano, O., Combustion synthesis of TiC-based ceramic–metal composites with high entropy alloy binder, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 2527–2532. https://doi.org/10.1016/j.jeurceramsoc.2019.11.059

    Article  CAS  Google Scholar 

  17. Korchagin, M.A., Thermal explosion in mechanically activated low-calorific-value compositions. Combust., Explos. Shock Waves, 2015, vol. 51, no. 5, pp. 77–86. https://doi.org/10.1134/S0010508215050093

    Article  Google Scholar 

  18. Korchagin, M.A., Filimonov, V.Y., Smirnov, E.V., and Lyakhov, N.Z., Thermal explosion of a mechanically activated 3Ni–Al mixture, Combust., Explos. Shock Waves, 2010, vol. 46, no. 1, pp. 41–46. https://doi.org/10.1007/s10573-010-0007-7

    Article  Google Scholar 

  19. Kochetov, N.A. and Sytschev, A.E., Effects of magnesium on initial temperature and mechanical activation on combustion synthesis in Ti–Al–Mg system, Mater. Chem. Phys., 2021, vol. 257, p. 123727. https://doi.org/10.1016/j.matchemphys.2020.123727

    Article  CAS  Google Scholar 

  20. Kochetov, N.A. and Seplyarskii, B.S., Effect of mechanical activation of granulated and powdered Ni + Al mixtures on flame-propagation rates and sample elongation in combustion, Russ. J. Phys. Chem. B, 2018, vol. 12, no. 5, pp. 883–889. https://doi.org/10.1134/S1990793118050172

    Article  CAS  Google Scholar 

  21. Borovinskaya, I.P., Merzhanov, A.G., Novikov, N.P., and Filonenko, A.K., Gasless combustion of mixtures of powdered transition metals with boron, Combust., Explos. Shock Waves, 1974, vol. 10, no. 1, pp. 2–10. https://doi.org/10.1007/BF01463777

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to I.D. Kovalev, A.S. Shchukin, M.L. Busurina, and R.A. Kochetkov for their kind help in experiments and to B.S. Seplyarskii for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A. HEA-Matrix TiB2 Composites by SHS Method. Int. J Self-Propag. High-Temp. Synth. 31, 24–30 (2022). https://doi.org/10.3103/S1061386222010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222010046

Keywords:

Navigation