Skip to main content
Log in

Abstract

In this work, sugarcane bagasse ash (BA) was used as a low-cost starting material for synthesizing nanosized SiC powder as an alternative to existing techniques for utilizing ever increasing amounts of industrial BA wastes. Fine SiC powder was SHS-produced from BA–C–Mg mixtures and characterized by XRD and SEM. The product powder was found to contain SiC, MgO, and a minor amount of Mg2SiO4. Unwanted MgO and Mg2SiO4 were leached out with acid solutions. The leached product represented the agglomerated powder of nanoparticles with a mean size of about 50 nm. Our approach can help not only to diminish harmful effects caused by ash disposal but also to suggest a cost-effective process for production of fine SiC powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crop Production 2010–2014, Food and Agriculture Organization of the United Nations: FAOSTAT Division, 2015, May 24. https://doi.org/faostat3.fao.org/browse/Q/QC/E

  2. Souza, A.E., Teixeira, S.R., Santos, G.T.A, Costa, F.B., and Longo, E., Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials, J. Environ. Manage., 2011, vol. 92, no. 10, pp. 2774–2780 doi 10.1016/j.jenvman. 2011.06.020

    Article  Google Scholar 

  3. Cordeiro, G.C., Filho, R.D.T., Fairbairn, E.M.R., Luis, M.M.T., and Oliveira, C.H., Influence of mechanical grind on the pozzolanic activity of residual sugarcane bagasse ash, presented at Int. RILEM Conf on Use of Recycled Mater. in Building and Structure, Barcelona, 2004.

    Google Scholar 

  4. Foo, K.Y. and Hameed, B.H., Value-added utilization of oil palm ash: A superior recycling of the industrial agricultural waste, J. Hazard. Mater., 2009, vol. 172, no. 2–3, pp. 523–531. doi 10.1016/j.jhazmat.2009.07.091

    Article  Google Scholar 

  5. Ganesan, K., Rajagopal, K., and Thangavel, K., Evaluation of bagasse ash as supplementary cementitious material, Cem. Concr. Compos., 2007, vol. 29, no. 6, pp. 515–524 doi 10.1016/j.cemconcomp.2007.03.001

    Article  Google Scholar 

  6. Modani, P.O. and Vyawahare, M.R., Utilization of bagasse ash as a partial replacement of fine aggregate in concrete, Process. Eng., 2013, vol. 51, pp. 25–29 doi 10.1016/j.proeng.2013.01.007

    Google Scholar 

  7. Alavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D.C., and Gochi-Ponce, Y., The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks, Constr. Build. Mater., 2012, vol. 34, pp. 296–305 doi 10.1016/j.conbuildmat.2012. 02.072

    Article  Google Scholar 

  8. Rao, M., Parwate, A.V., and Bhole, A.G., Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash, Waste Manage., 2002, vol. 22, no. 7, pp. 821–830 doi 10.1016/S0956-053X(02)00011-9

    Article  Google Scholar 

  9. Gupta, V.K. and Ali, I., Removal of lead and chromium from wastewater using bagasse fly ash: A sugar industry waste, J. Colloid Interface Sci., 2004, vol. 271, no. 2, pp. 321–328 doi 10.1016/j.jcis.2003.11.007

    Article  Google Scholar 

  10. Gupta, V.K., Jain, C.K., Ali, I., Sharma, M., and Saini, V.K., Removal of cadmium and nickel from wastewater using bagasse fly ash: A sugar industry waste, Water Res., 2003, vol. 37, no. 16, pp. 4038–4044 doi 10.1016/S0043-1354(03)00292-6

    Article  Google Scholar 

  11. Santos, R.J., Agostini, D.L.S., Cabrera, F.C., Reis, E.A.P., Ruiz, M.R., Budemberg, E.R., Teixeira, S.R., and Job, A.E., Sugarcane bagasse ash: New filler to natural rubber composite, Polímeros, 2014, vol. 24, no. 6, pp. 646–653 doi 10.1590/0104-1428.1547

    Article  Google Scholar 

  12. Najafi, A., Fard, F.G., Rezaie, H.R., and Ehsani, N., Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method, Powder Technol., 2012, vol. 219, pp. 202–210 doi 10.1016/j.powtec.2011.12.045

    Article  Google Scholar 

  13. Réau, A., Guizard, B., Canel, J., Galy, J., and Ténégal, F., Silicon carbide nanopowders: The parametric study of synthesis by laser pyrolysis, J. Am. Ceram. Soc., 2012, vol. 95, no. 1, pp. 153–158 doi 10.1111/j.1551- 2916.2011.04860.x

    Article  Google Scholar 

  14. Pampuch, R., Stobierski, L., Lis, J., and Rączka, M., Solid combustion synthesis of β-SiC powders, Mater. Res. Bull., 1987, vol. 22, no. 9, pp. 1225–1231 doi 10.1016/0025-5408(87)90132-2

    Article  Google Scholar 

  15. Yang, Y., Lin, Z.-M., and Li, J.-T., Synthesis of SiC by silicon and carbon combustion in air, J. Eur. Ceram. Soc., 2009, vol. 29, no. 1, pp. 175–180 doi 10.1016/j.jeurceramsoc.2008.06.013

    Article  Google Scholar 

  16. Lee, J.-G. and Cutler, I.B., Formation of silicon carbide from rice hulls, Am. Ceram. Soc. Bull., 1975, vol. 54, no. 2, pp. 195–198 doi 10.1016/S0008- 4433(97)00017-7

    Google Scholar 

  17. Gorthy, P. and Mukunda Pudukottah, G., Production of silicon carbide from rice husks, J. Am. Ceram. Soc., 1999, vol. 82, no. 6, pp. 1393–1400. doi 10.1111/j.1151- 2916.1999.tb01929.x

    Article  Google Scholar 

  18. Li, J., Shirai, T., and Fuji, M., Fabrication of nanostructured silicon carbide from rice husks and its photoluminescence properties, J. Ceram. Soc. Jpn., 2012, vol. 120, no. 1404, pp. 338–340 doi 10.2109/ jcersj2.120.338

    Article  Google Scholar 

  19. Niyomwas, S., Synthesis and characterization of silicon–silicon carbide composites from rice husk ash via self-propagating high temperature synthesis, J. Met., Mater. Miner., 2009, vol. 19, no. 2, pp. 21–25 https://doi.org/www.material.chula.ac.th/Journal/v19-2/21-25%20NIYOMWAS.pdf

    Google Scholar 

  20. Krishnarao, R.V., Godkhindi, M.M., Chakraborty, M., and Mukunda, P.G., Formation of SiC whiskers from compacts of raw rice husks, J. Mater. Sci., 1994, vol. 29, no. 10, pp. 2741–2744 doi 10.1007/BF00356826

    Article  Google Scholar 

  21. Li, J., Shirai, T., and Fuji, M., Rapid carbothermal synthesis of nanostructured silicon carbide particles and whiskers from rice husk by microwave heating method, Adv. Powder Technol., 2013, vol. 24, no. 5, pp. 838–843 doi 10.1016/j.apt.2013.02.003

    Article  Google Scholar 

  22. Hongjie, W., Yonglan, W., and Zhihao, J., SiC powders prepared from fly ash, J. Mater. Process. Technol., 2001, vol. 117, no. 1–2, pp. 52–55. doi 10.1016/S0924- 0136(01)01151-7

    Article  Google Scholar 

  23. Reddy, R.G., Thermodynamics, New York: Plenum, 1996.

    Google Scholar 

  24. Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials: I. Reaction parameters, Prog. Mater. Sci., 1995, vol. 39, no. 4, pp. 243–273 doi 10.1016/0079-6425(94)00011-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khangkhamano.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khangkhamano, M., Singsarothai, S., Kokoo, R. et al. Conversion of Bagasse Ash Waste to Nanosized SiC Powder. Int. J Self-Propag. High-Temp. Synth. 27, 98–102 (2018). https://doi.org/10.3103/S1061386218020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386218020103

Keywords

Navigation