Skip to main content
Log in

Structural and mechanical properties of nanograined magnesium ferrite produced by oxalate coprecipitation method

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Magnesium ferrite (MgFe2O4) was prepared by simple low-cost oxalate coprecipitation method and characterized by XRD and SEM. The X-ray analysis confirmed the formation of a single-phase cubic spinel structure. The product revealed a non-uniform morphology and some certain extent of agglomeration. Crystallite size, texture coefficient, dislocation density, hopping length, and mechanical properties of the product are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanpo, N., Solution precursor plasma spray system, in Springer Briefs in Materials, 2014, pp. 5–50. http://www.springer.com/978-3-319-07024-7

    Google Scholar 

  2. Goldman, A., Modern Ferrite Technology, New York: Springer, 2006. http://www.springer.com/la/book/9780387281513

  3. Vinayak, V., Khirade, P.P., Birajdar, S.D., Gaikwad, P.K., Shinde, N.D., and Jadhav, K.M., Low temperature synthesis of magnesium doped cobalt ferrite nanoparticles and their structural properties, Int. Adv. Res. J. Sci. Eng. Technol., 2015, vol. 2, no. 3, pp. 55–58. doi 10.17148/IARJSET.2015.2313

    Article  Google Scholar 

  4. Maensiri, S., Masingboon, C., Boonchom, B., and Seraphin, S., A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white, Scr. Mater., 2007, vol. 56, no. 9, pp. 797–800. http://dx.doi.org/doi 10.1016/j.scriptamat.2006.09.033

    Article  Google Scholar 

  5. Waqus, H. and Quresghi, A.H., Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process, J. Therm. Anal. Calorim., 2009, vol. 98, no. 2, pp. 355–360. doi 10.1007/s10973-009-0289-8

    Article  Google Scholar 

  6. Singhal, S., Singh, J., Barthwal, S.K., and Chandra, K., Preparation and characterization of nanosize nickelsubstituted cobalt ferrites (CoNiFeO), J. Solid State Chem., 2005, vol. 178, no. 10, pp. 3183–3189. http://dx.doi.org/doi 10.1016/j.jssc.2005.07.020

    Article  Google Scholar 

  7. Prinetto, F., Tichit, D., Teissier, R., and Coq, B., Mgand Ni-containing layered double hydroxides as soda substitutes in the aldol condensation of acetone, Catal. Today, 2000, vol. 55, no. 1–2, pp. 103–116. http://dx.doi.org/doi 10.1016/S0920-5861(99)00230-8

    Article  Google Scholar 

  8. Murcia-Mascaros, S., Navarrao, R., Gomez-Sainero, L., Costantio, U., Nocchetti, J.L., and Fierro., G., Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors, J. Catal., 2001, vol. 198, no. 2, pp. 338–347. doi 10.1006/jcat.2000.3140

    Article  Google Scholar 

  9. Rane, K.S., Verenkar, V.M.S., and Sawant, P.Y., Dielectric behavior of MgFe2O4 prepared from chemically beneficiated iron ore rejects, Bull. Mater. Sci., 2008, vol. 24, no. 3, pp. 323–330. doi 10.1007/BF02704930

    Article  Google Scholar 

  10. Liu, Y.L., Liu, Z.M., Yang, Y., Yang, H.F., Shen, G.L., and Yu, R.Q., Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials, Sens. Actuators B, 2005, vol. 107, no. 2, pp. 600–604. doi 10.1016/j.snb. 2004.11.026

    Article  Google Scholar 

  11. Candeia, R.A., Souza, M.A.F., Bernardi, M.I.B., Maestrelli, S.C., Santos, I.M.G., Souza, A.G., and Longo, E., MgFe2O4 pigment obtained at low temperature, Mater. Res. Bull., 2006, vol. 41, no. 1, pp. 183–190.190. doi 10.1016/j.materresbull.2005.07.019

    Article  Google Scholar 

  12. Dayakar, T., Venkateswara Rao, K., and Shilpa Chakra, Ch., Synthesis and characterization of MgFe2O4(0.5)/TiO2(0.5) nano ceramic pigment by mechanochemical synthesis, Int. J. Nano Sci. Technol., 2013, vol. 1, no. 1, pp. 1–8. http://www.ijnst.com/

    Article  Google Scholar 

  13. Sepelak, V., Bergmann, I., Feldhoff, M.A., Litterst, F.J., Becker, K.D., Cadogan, J.M., Hofmann, M., Hoelzel, M., Wang, J.L., Avdeev, M., and Campbell, S.J., Mechanosynthesis of nanocrystalline MgFe2O4: Neutron diffraction and Mössbauer spectroscopy, Hyperfine Interact., 2010, vol. 198, no. 1, pp. 67–71. doi 10.1007/s10751-010-0243-y

    Article  Google Scholar 

  14. Berchmans, L.J., Selvan, R.K., Kumar, P.N.S., and Augustin, C.O., Structural and electrical properties of Ni1–xMgxFe2O4 synthesized by citrate gel process, J. Magn. Magn. Mater., 2004, vol. 279, no. 23, pp. 103–110. doi 10.1016/j.jmmm.2004.01.073

    Article  Google Scholar 

  15. Iqbal, M.J., Ahmad, Z., Melikhov, Y., and Niebedim, I.C., Temperature and composition dependence of magnetic properties of cobalt–chromium co-substituted magnesium ferrite nanomaterials, J. Magn. Magn. Mater., 2012, vol. 324, no. 23, pp. 3986–3990. http://dx.doi.org/doi 10.1016/j.jmmm.2012.06.031

    Article  Google Scholar 

  16. Akhtar, M.J. and Younas, M., Structural and transport properties of nanocrystalline MnFe2O4 synthesized by coprecipitation method, Solid State Sci., 2012, vol. 14, no. 10, pp. 1536–1542. http://dx.doi.org/doi 10.1016/j.solidstatesciences.2012.08.026

    Article  Google Scholar 

  17. Yattinahalli, S.S., Kapatkar, S.B., and Mathad, S.N., Structural and mechanical properties of a nano ferrite, Adv. Sci. Focus, 2014, vol. 2, no. 1, pp. 42–46. doi 10.1166/asfo.2014.1079

    Article  Google Scholar 

  18. Khot, V.M., Salunkhe, A.B., Phadatare, M.R., and Pawar, S.H., Formation, microstructure, and magnetic properties of nanocrystalline MgFe2O4, Mater. Chem. Phys., 2012, vol. 132, no. 2, pp. 782–787. http://dx.doi.org/doi 10.1016/j.matchemphys.2011.12.012

    Google Scholar 

  19. Mathad, S.N. and Puri, V., Microwave studies of environmental friendly ferroelectrics, Int. Schol. Res. Notices, 2014, vol. 2014, article ID 683986. http://dx.doi.org/doi 10.1155/2014/683986

    Google Scholar 

  20. Mathad, S.N., Jadhav, R.N., Patil, N.D., and Puri, V., Structural and mechanical properties of Sr+2-doped bismuth manganite thick films, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 4, pp. 180–184. doi 10.3103/S1061386213040018

    Article  Google Scholar 

  21. Mathad, S.N., Jadhav, R.N., Phadatare, V., and Puri, V., Structural and mechanical properties of Sr-doped barium niobate thick films, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 3, pp. 145–150. doi 10.3103/S106138621403008X

    Article  Google Scholar 

  22. Pathan, A.T., Mathad, S.N., and Shaikh, A.M., Infrared spectral studies of Co2+-substituted LiNi–Zn nano-structured ferrites, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 2, pp. 112–117. doi 10.3103/S1061386214020083

    Article  Google Scholar 

  23. Wurst, J.C. and Nelson, J.A., Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc. Bull., 1972, vol. 55, no. 1, pp. 109–111. doi 10.1111/j.1151-2916.1972.tb11224.x

    Article  Google Scholar 

  24. Suryawanshi, S.S., Deshpand, V., and Sawanth,S.R, J. Mater. Chem. Phys., 1999, vol. 59, no. 2, pp. 199–203. doi 10.1016/S0254-0584(99)00046-2

    Article  Google Scholar 

  25. Raghasudha, M., Ravinder, D., and Veerasomaiah, P., Characterization of nano-structured magnesium chromium ferrites synthesized by citrate–gel autocombustion method, Adv. Mater. Lett., 2013, vol. 4, no. 12, pp. 910–916. doi 10.5185/amlett.2013.5479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Mathad.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shedam, R.M., Gadkari, A.B., Mathad, S.N. et al. Structural and mechanical properties of nanograined magnesium ferrite produced by oxalate coprecipitation method. Int. J Self-Propag. High-Temp. Synth. 26, 75–79 (2017). https://doi.org/10.3103/S1061386217010113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386217010113

Keywords

Navigation