Skip to main content
Log in

Explosive solid-state synthesis in the Al-S system: Influence of dispersity and duration of shock loading

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Explosive solid-state synthesis in the Al-S system was numerically simulated in terms of a multi-component model. Explored was the influence of initial dispersity and shock duration on the dynamics of shock-induced reactions. Depending on conditions, the reaction was found to proceed in a three-stage, two-stage or one-stage mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prümmer, R., Explosive compaction of powders: Principle and prospects, Materialwiss. Werkstofftech., 1989, vol. 20, no. 12, pp. 410–415.

    Article  Google Scholar 

  2. Lin, E.E., Novikov, S.A., Kuropatkin, V.G., Medvedkin, V.A., and Sukharenko, V.I., Dynamic compaction of ultradisperse diamonds, Combust. Explos. Shock Waves, 1995, vol. 31, no. 5, pp. 624–626.

    Article  Google Scholar 

  3. Gordopolov, Yu.A., Batsanov, S.S., and Trofimov, V.S., Shock-induced solid-solid reactions and detonations, in Shock Wave Science and Technology Reference Library, Vol. 4: Heterogeneous Detonation, Zhang, F., Ed., Heidelberg: Springer, 2009, pp. 287–314.

    Google Scholar 

  4. Eakins, D.E. and Thadhani, N.N., Shock compression of reactive powder mixtures, Int. Mater. Rev., 2009, vol. 54, no. 4, pp. 181–213.

    Article  Google Scholar 

  5. Zelepugin, S.A., Nikulichev, V.B., Ivanova, O.V., and Zelepugin, A.S., Modeling chemical transformations in Ti-Si system of during shock-wave loading, Khim. Fiz., 2005, vol. 24, no. 10, pp. 76–83.

    Google Scholar 

  6. Gryadunov, A.N., Shteinberg, A.S., Dobler, E.A., Gorel’skii, V.A., and Zelepugin, S.A., Ignition and development of chemical reaction between titanium and carbon under shock loading, Int. J. Self-Prop. High-Temp. Synth., 1994, vol. 3, no. 3, pp. 253–260.

    Google Scholar 

  7. Jetté, F.X., Goroshin, S., Higgins, A.J., Frost, D.L., and Lee, J.J., Time-resolved temperature measurements of shock initiation in heterogeneous exothermic mixtures, AIP Conf. Proc., 2009, vol. 1195, pp. 141–144.

    Article  Google Scholar 

  8. Dolgoborodov, A.Yu., Makhov, M.N., Kolbanev, I.V., Streletskii, A.N., and Fortov, V.E., Detonation in an aluminum-Teflon mixture, JETP Lett., 2005, vol. 81, no. 7, pp. 311–314.

    Article  Google Scholar 

  9. Batsanov, S.S., Specific features of solid-phase reactions induced by shock waves, Combust. Explos. Shock Waves, 2006, vol. 42, no. 2, pp. 237–241.

    Article  Google Scholar 

  10. Evstigneev, N.K. and Knyazeva, A.G., Model of nonstationary propagation of a solid-state chemical transformation under uniaxial loading, Combust. Explos. Shock Waves, 2010, vol. 46, no. 3, pp. 307–314.

    Article  Google Scholar 

  11. Leitsin, V.N., Kolmakova, T.V., and Dmitrieva, M.A., Factors controlling thermoluminescence from self-propagating high-temperature synthesis in powder bodies, Russ. J. Phys. Chem., Ser. B, 2011, vol. 5, no. 5, pp. 816–820.

    Article  Google Scholar 

  12. Markov, A.A., Filimonov, I.A., and Martirosyan, K.S., Simulation of front motion in a reacting condensed two-phase mixture, J. Comput. Phys., 2012, vol. 231, no. 20, pp. 6714–6724.

    Article  Google Scholar 

  13. Leitsin, V.N., Dmitrieva, M.A., and Kolmakova, T.V., Shock-assisted SHS in Ni-Al mixtures: Computer simulation, Int. J. Self-Prop. High-Temp. Synth., 2009, vol. 18, no. 3, pp. 139–144.

    Article  Google Scholar 

  14. Lapshin, O.V., Prokof’ev, V.G., and Smolyakov, V.K., Influence of mechanical activation on gasless combustion of three-component SHS systems with competing (parallel) reactions, Int. J. Self-Prop. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 98–103.

    Article  Google Scholar 

  15. Shteinberg, A.S., Berlin, A.A., Denisaev, A.A., and Mukasyan, A.S., Kinetics of fast reactions in condensed systems: Some recent results (autoreview), Int. J. Self-Prop. High-Temp. Synth., 2011, vol. 20, no. 4, pp. 259–265.

    Article  Google Scholar 

  16. Zelepugin, S.A. and Nikulichev, V.B., Numerical modeling of sulfur-aluminum interaction under shockwave loading, Combust. Explos. Shock Waves, 2000, vol. 36, no. 6, pp. 845–850.

    Article  Google Scholar 

  17. Nigmatulin, R.I., Dynamics of Multiphase Media, New York: Hemisphere, 1991, vol. 1.

  18. Kuropatenko, V.F., Momentum and energy exchange in non-equilibrium multicomponent media, J. Appl. Mech. Tech. Phys., 2005, vol. 46, no. 1, pp. 1–8.

    Article  Google Scholar 

  19. Zelepugin, S.A., Ivanova, O.V., Yunoshev, A.S., and Sil’vestrov, V.V., The development of the aluminum sulfide synthesis reaction on explosive loading of a cylindrical ampoule, Dokl. Phys. Chem., 2010, vol. 434, pt. 2, pp. 172–176.

    Article  Google Scholar 

  20. Ivanova, O., Zelepugin, S., Yunoshev, A., and Silvestrov, V., A multicomponent medium model for reacting porous mixtures under shock wave loading, J. En. Mater., 2010, vol. 28, Suppl. 1, pp. 303–317.

    Article  Google Scholar 

  21. Zelepugin, S.A., Nikulichev, V.B., and Ivanova, O.V., Numerical simulation of superfast shock-induced chemical reaction in titanium-silicon mixture, AIP Conf. Proc., 2006, vol. 845, pp. 1177–1180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ivanova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, O.V., Zelepugin, S.A. Explosive solid-state synthesis in the Al-S system: Influence of dispersity and duration of shock loading. Int. J Self-Propag. High-Temp. Synth. 23, 192–197 (2014). https://doi.org/10.3103/S1061386214040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386214040025

Keywords

Navigation