Skip to main content
Log in

Coplanarity-Based Approach for Camera Motion Estimation Invariant to the Scene Depth

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for estimating the parameters of camera movement from images obtained from this camera. This method is equally effectively applicable to flat and three-dimensional scenes. The proposed method allows avoiding the restrictions imposed on the set of initial data when using the fundamental matrix and the projective transformation matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Klochko, V. and Smirnov, S., Object tracking algorithm for a passive positioning system, Comput. Opt., 2020, vol. 44, no. 2, pp. 244–249.

    Article  Google Scholar 

  2. Shalimova, E., Shalnov, E. and Konushin, A., Camera parameters estimation from pose detections, Comput. Opt., 2020, vol. 44, no. 3, pp. 385–392.

    Article  Google Scholar 

  3. Smelkina, N. et al., Reconstruction of anatomical structures using statistical shape modeling, Comput. Opt., 2017, vol. 41, no. 6, pp. 897-904.

    Article  Google Scholar 

  4. Scaramuzza, D. and Fraundorfer, F., Visual Odometry [Tutorial], IEEE Rob. Autom. Mag., 2011, vol. 18, no. 4, pp. 80–92.

    Article  Google Scholar 

  5. Longuet-Higgins, H., A computer algorithm for reconstructing a scene from two projections, Nature, 1981, vol. 293, no. 5828, pp. 133–135.

    Article  Google Scholar 

  6. Krombach, N., Droeschel, D., Houben, S., and Behnke, S., Feature-based visual odometry prior for real-time semi-dense stereo SLAM, Rob. Autonom. Syst., 2018, vol. 109, pp. 38–58.

    Article  Google Scholar 

  7. Dias, N. and Laureano, G., Accurate stereo visual odometry based on keypoint selection, 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), 2019.

  8. Eremeev, S., Andrianov, D., and Titov, V., An algorithm for matching spatial objects of different-scale maps based on topological data analysis, Comput. Opt., 2019, vol. 43, no. 6, pp. 1021–1029.

    Article  Google Scholar 

  9. Fathian, K., Ramirez-Paredes, J., Doucette, E., Curtis, J., and Gans, N., QuEst: A quaternion-based approach for camera motion estimation from minimal feature points, IEEE Rob. Autom. Lett., 2018, vol. 3, no. 2, pp. 857–864.

    Article  Google Scholar 

  10. Gao, X., Wang, R., Demmel, N., and Cremers, D., LDSO: Direct sparse odometry with loop closure, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

  11. Han, T., Zong, Q., Lu, H., and Tian, B., A semi-dense direct visual inertial odometry for state estimator, 2019 Chinese Control Conference (CCC), 2019.

  12. He, M., Zhu, C., Huang, Q., Ren, B., and Liu, J., A review of monocular visual odometry, Visual Comput., 2019, vol. 36, no. 5, pp. 1053–1065. Available: .https://doi.org/10.1007/s00371-019-01714-6

    Article  Google Scholar 

  13. Alekseev, A., Goshin, Y., Davydov, N., Ivliev, N., and Nikonorov, A., Visual-inertial odometry algorithms on the base of thermal camera, Proceedings of the V International Conference Information Technology and Nanotechnology 2019, 2019.

  14. Faugeras, O. and Lustman, F., Motion and structure from motion in a piecewise planar environment, Int. J. Pattern Recognit. Artif. Intell., 1988, vol. 02, no. 03, pp. 485–508.

    Article  Google Scholar 

  15. Loop, C. and Zhengyou Zhang, Computing rectifying homographies for stereo vision, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. PR00149).

  16. Goshin, Y., Estimating intrinsic camera parameters using the Sum of cosine distances, J. Phys.: Conf. Ser., 2018, vol. 1096, p. 012092.

    Google Scholar 

  17. Nelder, J. and Mead, R., A Simplex method for function minimization, Comput. J., 1965, vol. 7, no. 4, pp. 308–313.

    Article  MathSciNet  MATH  Google Scholar 

  18. Musa, P., Purwanto, I., Christie, D., Wibowo, E., and Irawan, R., The methodology for obtaining nonlinear and continuous three-dimensional topographic data using inertial and optical measuring instruments of unmanned ground systems, Comput. Opt., 2022, vol. 46, no. 2, pp. 280–297.

    Article  Google Scholar 

  19. Goshin, Y. and Kotov, A., Method for camera motion parameter estimation from a small number of corresponding points using quaternions, Comput. Opt., 2020, vol. 44, no. 3, pp. 446–453.

    Article  Google Scholar 

  20. Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., and Karaman, S., The Blackbird UAV dataset, Int. J. Rob.Res., 2020, vol. 39, no. 10–11, pp. 1346–1364.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation of the Russian Federation as a part of the “Priority 2030” federal strategic academic leadership program under “2021–2030 Samara University Development Program” and state assignment no. 0777-2020-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Goshin.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goshin, Y. Coplanarity-Based Approach for Camera Motion Estimation Invariant to the Scene Depth. Opt. Mem. Neural Networks 31 (Suppl 1), 22–30 (2022). https://doi.org/10.3103/S1060992X22050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X22050058

Keywords:

Navigation