Skip to main content
Log in

Algorithm of Processing Data from Lidar Sensing of Methane in the Atmosphere

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

An algorithm of software complex is developed to process data of lidar gas analysis in IR wavelength range for a horizontal path of atmospheric sensing. The complex comprises: the module of writing data from atmospheric lidar sensing, module of absorption cross-section calculation, and module of methane concentration profile retrieval. The software complex for processing lidar gas analysis data, developed on the basis of the created algorithm, makes it possible to obtain retrieved methane concentration profiles along 1 km sensing path from the set of recorded return signals. The modules for writing data from atmospheric lidar sensing and for retrieving methane concentration profiles allow for a visual control of recorded return signals and retrieved methane concentration profiles. We present an example of retrieving methane concentration profile from lidar data that is obtained in Tomsk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Romanovskii, O.A., Sadovnikov, S.A., Kharchenko, O.V., et al., Near/mid-IR OPO lidar system for gas analysis of the atmosphere: simulation and measurement results, Opt. Mem. Neural Networks, 2019, vol. 28, no. 2, pp. 1–10. https://doi.org/10.3103/S1060992X19010053

    Article  Google Scholar 

  2. Yakovlev, S., Sadovnikov, S., Kharchenko, O., et al., Remote sensing of atmospheric Methane with IR OPO Lidar System, Atmosphere, 2020, vol. 11, no. 1, p. 70. https://doi.org/10.3390/atmos11010070

    Article  Google Scholar 

  3. Mammez, D., Cadiou, E., Dherbecourt, J.-P., Raybaut, M., Melkonian, J.-M., Godard, A., Gorju, G., Pelon, J., and Lefebvre, M., Multispecies transmitter for DIAL sensing of atmospheric water vapor, methane and carbon dioxide in the 2 μm region, Proc. SPIE, 2015, vol. 9645, p. 964507. https://doi.org/10.1117/12.2194754

    Article  Google Scholar 

  4. Robinson, I., Jack, J.W., Rae, C.F., and Moncrieff, J.B., Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide, Proc. SPIE, 2014, vol. 9246, p. 92460U. https://doi.org/10.1117/12.2068023

    Article  Google Scholar 

  5. Robinson, I., Jack, J.W., Rae, C.F., and Moncrieff, J.B., A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases, Proc. SPIE, 2015, vol. 9645, p. 96450U. https://doi.org/10.1117/12.2197251

    Article  Google Scholar 

  6. Mitev, V., Borelli, R., Fiorani, L., Grigorov, I., Nuvoli, M., Palucci, A., Pistilli, M., Puiu, A., Rebane, O., and Santoro, S., Lidar extinction measurement in the mid infrared, Proc. SPIE, 2014, vol. 9292, p. 92923W. https://doi.org/10.1117/12.2075832

    Article  Google Scholar 

  7. Yerasi, A., Tandy, W.D., Emery, W.J., and Barton-Grimley, R.A., Comparing the theoretical performances of 1.65 and 3.3 μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks, J. Appl. Remote Sens., 2018, vol. 12. no. 2, p. 026030. https://doi.org/10.1117/1.JRS.12.026030

    Article  Google Scholar 

  8. Zuev, V.E., Rasprostranenie lazernogo izlicheniya v atmosfere (Laser Radiation Propagation through Atmosphere), Moscow, Radio i svyaz Publ., 1981.

  9. Vasil’ev, B.I. and Mannoun, U.M., IR differential-absorption lidars for ecological monitoring of the environment, Quantum Electron., 2006, vol. 36, no. 9, pp. 801–820. https://doi.org/10.1070/QE2006v036n09ABEH006577

    Article  Google Scholar 

  10. Veerabuthiran, S., Razdan, A.K., Jindal, et al., Development of 3.0–3.45 nm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane, Opt. Laser Technol., 2015, vol. 73, pp. 1–5. https://doi.org/10.1016/j.optlastec.2015.04.007

    Article  Google Scholar 

  11. Ambrico, P.F., Amodeo, A., Di Girolamo, P., et al., Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region, Appl. Opt., 2000, vol. 39, no. 36, pp. 6847–6865. https://doi.org/10.1364/AO.39.006847

    Article  Google Scholar 

  12. Weitkamp, C., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Science & Business, 2006, vol. 102.

  13. Privalov, V.E. and Shemanin, V.G., Optimization of a differential absorption and scattering lidar for sensing molecular hydrogen in the atmosphere, Tech. Phys. Russ. J. Appl. Phys., 1999, vol. 44, no. 8, pp. 928–931.

    Google Scholar 

  14. Zuev, V.E., Makushkin, Yu.S., and Ponomarev, Yu.N., Sovremennye problemy atmosfernoj optiki. Spektroskopiya atmosfery (Modern Problems of Atmospheric Optics. Atmospheric Spectroscopy), Leningrad: Gidrometeoizdat Publ., 1987.

  15. Gordon, I.E., Rothman, L. S., Hill, C., et al., The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 2017, vol. 203, pp. 3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038

    Article  Google Scholar 

  16. Edwards, P.D., GENLN2: A General Line-by-line Atmospheric Transmittance and Radiance Model, NCAR Tech. Note, 1992, p. 147.

    Google Scholar 

  17. Bobrovnikov, S.M., Matvienko, G.G., Romanovskii, O.A., et al., Lidarniy spektroskopicheskii gazoanaliz atmosfery (Spectroscopic Lidar Gas Analysis of Atmosphere), Tomsk: Publishing House of the IAO SB RAS, 2014.

  18. Terlouw, J.P., Vogelaar, M.G.R., and Breddels, M.A., Kapteyn documentation. https://https://readthedocs.org/projects/kapteyn/downloads/pdf/latest/. Accessed on March 20, 2020.

  19. Rolf, C., Lidar observations of natural and volcanic-ash-induced cirrus clouds, Forschungszentrum Jülich, 2012. vol. 163.

    Google Scholar 

Download references

Funding

The development of an algorithm for processing lidar gas analysis data was supported by the Ministry of Science and Higher Education of the Russian Federation (budget funds for IAO SB RAS). The development of a software package for processing lidar gas analysis data was carried out with the financial support of the Russian Foundation for Basic Research (Grant no. 19-45-700003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Romanovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevzorov, A.A., Romanovskii, O.A., Sadovnikov, S.A. et al. Algorithm of Processing Data from Lidar Sensing of Methane in the Atmosphere. Opt. Mem. Neural Networks 30, 97–104 (2021). https://doi.org/10.3103/S1060992X21020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X21020041

Keywords:

Navigation