Skip to main content
Log in

Current Trends in Development of Optical Metrology

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

This review offers the reader some of the achievements of modern optical metrology. Over the past decades, it has become possible to make a leap in the basic approaches of metrology from the nano to the femto, approaching the pico level of measurements. Control of nano (micro) particle motion by an optical field and their use for testing complex optical fields; ultra-precise determination of the optical parameters of both solid and liquid and gas-like substances by optical methods; the tiny metrology of the phase shift of orthogonally polarized beams and the determination of their degree of mutual coherence, by interference methods and many other, are proposed for consideration in this paper. Optical metrology, which is provided by three-dimensional polarization distributions of optical fields, where structured light plays a special role; by using femtosecond lasers, and much more, demonstrates the prospects of optical methods in modern measuring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Hell, S.W., Nanoscopy with focused light (Nobel Lecture), Angew. Chem., Int. Ed. Rev., 2015, vol. 54, pp. 8054–8066.

    Article  Google Scholar 

  2. Rubinsztein-Dunlop, H. et al., Roadmap on structured light, J. Opt., 2017, vol. 19, p. 013001.

    Article  Google Scholar 

  3. Rotenberg, N. and Kuipers, L., Mapping nanoscale lightfields, Nat. Photonics, 2014, vol. 9, p. 919.

    Article  Google Scholar 

  4. Bauer, T. et al., Observation of optical polarization Möbius strips, Science, 2015, vol. 347, p. 964.

    Article  Google Scholar 

  5. Geng, J., Structured-light 3D surface imaging: a tutorial, Adv. Opt. Photonics, 2011, vol. 3, pp. 128–133.

    Article  Google Scholar 

  6. Bliokh, K.Y. and Aiello, A., Goos–Hänchen and Imbert–Fedorov beam shifts: an overview, J. Opt., 2013, vol. 15, no. 1, p. 014001.

    Article  Google Scholar 

  7. Aiello, A., Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective, New J. Phys., 2012, vol. 14, p. 013058.

    Article  MATH  Google Scholar 

  8. Zoghi, M., Goos–Hänchen and Imbert–Fedorov shifts in a two-dimensional array of gold nanoparticles, J. Nanophotonics, 2018, vol. 12, no. 1, p. 016021.

    Article  Google Scholar 

  9. Goswami, S., Dhara, S., Pal, M., Nandi, A., Panigrahi, P.K., and Ghosh, N., Optimized weak measurements of Goos–Hänchen and Imbert–Fedorov shifts in partial reflection, Opt. Express, 2016, vol. 24, no. 6, pp. 6041–6051.

    Article  Google Scholar 

  10. Hosten, O. and Kwiat, P., Observation of the spin Hall effect of light via weak measurements, Science, 2008, vol. 319, no. 5864, pp. 787–790.

    Article  Google Scholar 

  11. Tervo, J., Coherence and polarization in stationary random electromagnetic fields, Opt. Pura Appl., 2005, vol. 28, no. 3, pp. 27–36.

    Google Scholar 

  12. Tervo, J., Setäla, T., and Friberg, A.T., Degree of coherence for electromagnetic fields, Opt. Express, 2003, vol. 11, pp. 1137–1143.

    Article  Google Scholar 

  13. Réfrégier, Ph. and Goudail, F., Invariant degrees of coherence of partially polarized light, Opt. Express, 2005, vol. 13, no. 16, pp. 6051–6060.

    Article  Google Scholar 

  14. Setälä, T., Tervo, J., and Friberg, A.T., Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence, Opt. Lett., 2006, vol. 31, no. 18, pp. 2669–2671.

    Article  Google Scholar 

  15. Refregier, P. and Roueff, A., Intrinsic Coherence: A New Concept in Polarization and Coherence Theory, OPN, 2007, pp. 30–35.

    Google Scholar 

  16. Wolf, E., Unified theory of coherence and polarization of random electromagnetic beams, Phys. Lett. A, 2003, vol. 312, pp. 263–267.

    Article  MathSciNet  Google Scholar 

  17. Ellis, J., and Dogariu, A., Complex degree of mutual polarization, Opt. Lett., 2004, vol. 29, no. 6, pp. 536–538.

    Article  Google Scholar 

  18. Angelsky, O.V., Hanson, S.G., Zenkova, C.Yu., Gorsky, M.P., and Gorodyns’ka, N.V., On polarization metrology (estimation) of the degree of coherence of optical waves, Opt. Express, 2009, vol. 17, no. 18, pp. 15623–15634.

    Article  Google Scholar 

  19. Angelsky, O.V., Zenkova, C.Yu., Gorsky, M.P., and Gorodyns’ka, N.V., On the feasibility for estimatingthe degree of coherence of waves at near field, Appl. Opt., 2009, vol. 48, vol. 15, pp. 2784–2788.

  20. Angelsky, O.V., Gorsky, M.P., Maksimyak, P.P., Maksimyak, A.P., Hanson, S.G., and Zenkova, C.Yu., Investigation of optical currents in coherent and partially coherent vector fields, Opt. Express, 2011, vol. 19, no. 2, pp. 660–672.

    Article  Google Scholar 

  21. Zenkova, C.Yu., Gorsky, M.P., Maksimyak, P.P., and Maksimyak, A.P., Optical currents in vector fields, Appl. Opt., 2011, vol. 50, no. 8, pp. 105–1112.

    Article  Google Scholar 

  22. Angelsky, O.V., Polyanskii, P.V., Mokhun, I.I., Zenkova, C.Yu., Bogatyryova, H.V., Felde, Ch.V., Bachinskiy, V.T., Boichuk, T.M., and Ushenko, A.G., Optical Measurements: Polarization and Coherence of Light Fields, Modern Metrology Concerns, Cocco, L., Ed., InTech, 2012.

    Google Scholar 

  23. Zenkova, C.Yu., Gorsky, M.P., and Gorodynska, N.V., Metrology of degree of coherence of circularly polarized optical waves, Opto-Electron. Rev., 2011, vol. 19, no. 3, pp. 14–19.

    Article  Google Scholar 

  24. Zenkova, C.Yu., Yermolenko, S.B., Angelskaya, A.O., and Soltys, I.V., The polarization peculiarities of the correlation (intrinsic coherence) of optical fields, Opt. Mem. Neural Networks, 2011, vol. 20, no. 4, pp. 247–254.

    Article  Google Scholar 

  25. Bauer, T., Orlov, S., Peschel, U., Banzer, P., and Leuchs, G., Nanointerferometric amplitude and phase reconstruction oftightly focused vector beams, Nat. Photonics, 2014, vol. 8, no. 23.

  26. Novotny, L., Beversluis, M.R., Youngworth, K.S., and Brown, T.G., Longitudinal field modes probed by singlemolecules, Phys. Rev. Lett., 2001, vol. 86, no. 23, pp. 5251–5254.

    Article  Google Scholar 

  27. Ye, J. and Cundiff, S.T., Femtosecond Optical Frequency, Comb Technology, New York: Springer, 2005.

    Google Scholar 

  28. Schimpf, D.N., Olgun, H.T., Kalaydzhyan, A., Hua, Y., Matlis, N.H., and Kärtner, F.X., Frequency-comb-based laser system producing stable optical beat pulses with picosecond durations suitable for high-precision multi-cycle terahertz-wave generation and rapid detection, Opt. Express, 2019, vol. 27, no. 8, pp. 11037–11056.

    Article  Google Scholar 

  29. Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., The investigation of the peculiarities of the motion of testing nanoobjects in the inhomogeneously-polarized optical field, Opt. Mem. Neural Networks, 2012, vol. 21, no. 1, pp. 34–44.

    Article  Google Scholar 

  30. Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., On the possibilities of using inhomogeneity in light energy distribution for estimating the degree of coherence of superposing waves, Appl. Opt., 2012, vol. 51, no. 10, pp. C38–C43.

    Article  Google Scholar 

  31. Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., Hanson, S.G., and Zenkova, C.Yu., Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams, Opt. Express, 2012, vol. 20, no. 4, pp. 3563–3571.

    Article  Google Scholar 

  32. Angelsky, O.V., Bekshaev, A.A., Maksimyak, P.P., Maksimyak, A.P., Mokhun, I.I., Hanson, S.G., Zenkova, C.Yu., and Tyurin, A.V., Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow, Opt. Express, 2012, vol. 20, no. 10, pp. 11351–11356.

    Article  Google Scholar 

  33. Bekshaev, A.Ya., Angelsky, O.V., Hanson, S.G., and Zenkova, C.Yu., Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows, Phys. Rev. A, 2012, vol. 86, no. 2, p. 023847.

    Article  Google Scholar 

  34. Zenkova, C., Soltys, I., and Angelsky, P., The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields, Opt. Appl., 2013, vol. 43, no. 2, pp. 297–312.

    Google Scholar 

  35. Berry, M.V., Optical currents, J. Opt. A: Pure Appl. Opt., 2009, vol. 11, p. 094001.

    Article  Google Scholar 

  36. Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., and Polyanskii, P.V., Internal energy flows and optical trapping, Opt. Photonics News, 2014, vol. 25, no. 12, pp. 20–21.

    Google Scholar 

  37. Ushenko, A.G., Ermolenko, S.B., Burkovets, D.N., and Ushenko, Y.A., Polarization microstructure of laser radiation scattered by optically active biotissues, Opt. Spectrosc., 1999, vol. 87, pp. 434–438.

    Google Scholar 

  38. Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., Hanson, S.G., and Zenkova, C.Yu., Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles, Opt. Express, 2013, vol. 21, no. 7, pp. 8922–8938.

    Article  Google Scholar 

  39. Dienerowitz, M., Mazilu, M., and Dholakia, K., Optical manipulation of nanoparticles: a review, J. Nanophotonics. 2008, vol. 2, p. 021875.

    Article  Google Scholar 

  40. Bekshaev, A.Ya., Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows, J. Opt., 2013, vol. 15, p. 044004.

    Article  Google Scholar 

  41. Angelsky, O.V., Maksymyak, P.P., Zenkova, C.Yu., Maksymyak, A.P., Hanson, S.G., and Ivanskyi, D.I., Peculiarities of control of erythrocytes moving in an evanescent field, J. Biomed. Opt., 2019, vol. 24, no. 5, p. 055002.

    Article  Google Scholar 

  42. Angelsky, O.V., Zenkova, C.Yu., and Ivanskyi, D.I., Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media, J. Optoelectron. Adv. Mater., 2018, vol. 20, no. 5–6, pp. 217–226.

    Google Scholar 

  43. Angelsky, O.V., Zenkova, C.Y., Maksymyak, P.P., Maksymyak, A.P., Ivanskyi, D.I., and Tkachuk, V.M., Peculiarities of energy circulation in evanescent field. Application for red blood cells, Opt. Mem. Neural Networks, 2019, vol. 28, no. 1, pp. 11–20.

    Article  Google Scholar 

  44. Antognozzi, M., Bermingham, C.R., Hoerber, H., Dennis, M.R., Bekshaev, A.Ya., Harniman, R.L., Simpson, S., Senior, J., Bliokh, K.Y., and Nori, F., Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever, Nat. Phys., 2016, vol. 12, pp. 731–735.

    Article  Google Scholar 

  45. Angelsky, O.V., Hanson, S.G., Maksimyak, P.P., Maksimyak, A.P., Zenkova, C.Yu., Polyanskii, P.V., and Ivanskyi, D.I., Influence of evanescent wave on birefringent microplates, Opt. Express, 2017, vol. 25, no. 3, p. 2299.

    Article  Google Scholar 

  46. Zenkova, C.Yu., Ivanskyi, D.I., and Kiyashchuk, T.V., Optical torques and forces in birefringent microplate, Opt. Appl., 2017, vol. 47, no. 3, pp. 483–493.

    Google Scholar 

  47. Bliokh, K.Y., Bekshaev, A.Y., and Nori, F., Extraordinary momentum and spin in evanescent waves, Nat. Commun., 2014, vol. 5.

  48. Yoon, Y.-Z. and Cicuta, P., Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses, Opt. Express, 2010, vol. 18, no. 7, p. 7076.

    Article  Google Scholar 

  49. Gu, M., Kuriakose, S., and Gan, X., A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes, Opt. Express, 2007, vol. 15, no. 3, p. 1369.

    Article  Google Scholar 

  50. Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., and Hanson, S.G., Measurement of small light absorption in microparticles by means of optically induced rotation, Opt. Express, 2015, vol. 23, no. 6, pp. 7152–7163.

    Article  Google Scholar 

  51. Bishop, A.I., Nieminen, T.A., Heckenberg, N.R., and Rubinsztein-Dunlop, H., Optical application and measurement of torque on microparticles of isotropic nonabsorbing material, Phys. Rev. A, 2003, vol. 68, no. 3, p. 033802.

    Article  Google Scholar 

  52. Svoboda, K. and Block, S.M., Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct., 1994, vol. 23, no. 1, pp. 247–285.

    Article  Google Scholar 

  53. Angelsky, O.V., Maksimyak, P.P., and Hanson, S., The Use of Optical-Correlation Techniques for Characterizing Scattering Object and Media, Bellingham, USA: SPIE Press PM71, 1999.

  54. Angelsky, O.V. and Maksimyak, P.P., Optical Correlation Diagnostics of Surface Roughness, in Optical Correlation Applications and Techniques, Bellingham, USA: SPIE Press, 2007.

    Book  Google Scholar 

  55. Angelsky, O.V. and Maksimyak, P.P., Optical correlation diagnostics of surface roughness in coherent-domain optical methods, Biomedical Diagnostics Environmental and Material Science, Tuchin, V.V., Ed., Kluwer Academic Publ., 2004, Chap. 2.

    Google Scholar 

  56. Angelsky, O.V., Ushenko, A.G., Pishak, V.P., Pishak, O.V., and Ushenko, Yu.A., Coherent introscopy of phase-inhomogeneous surfaces and layers, Proc. SPIE, 2000, vol. 4016, pp. 413–418.

  57. Angel’skii, O.V., Ushenko, O.G., Burkovets, D.N., Arkhelyuk, O.D., and Ushenko Y.A., Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes, Laser Phys., 2000, vol. 10, no. 5, pp. 1136–1142.

  58. Angelsky, O.V. and Maksimyak, P.P., Optical diagnostics of slightly rough surfaces, Appl. Opt., 1992, vol. 31, no. 1, pp. 140–143.

  59. Nagibina, I.N., Interefeance and Diffraction of Light, Mashynostroenie, 1985 (in Russian).

    Google Scholar 

  60. Angelsky, O.V., Maksymyak, P.P., and Polyansky, V.K., Measuremeny of refractive index of light scattering media, Avtorskoye svidetelstvo, 1986 (in Russian).

  61. Punge, A., Rizzoli, S.O., Jahn, R., Wildanger, J.D., Meyer, L., Schonle, A., Kastrup, L., and Hell, S.W., 3D reconstruction of high-resolution STED microscope images, Microsc. Res. Tech., 2008, vol. 71, pp. 644–650.

    Article  Google Scholar 

  62. Westphal, V. and Hell, S.W., Nanoscale resolution in the focal plane of an optical microscope, Phys. Rev. Lett., 2005, vol. 94, pp. 143903–143904.

    Article  Google Scholar 

  63. Vicidomini, G., Bianchini, P., and Diaspro, A., STED super-resolved microscopy, Nat. Methods, 2018, vol. 15, pp. 173–182.

    Article  Google Scholar 

  64. Valle, P.J., Fuentes, A., Canales, V.F., Cagigas, M.A., Villo-Perez, I., and Cagigal, M.P., Digital coronagraph algorithm, OSA Continuum, 2018, vol. 1, no. 2, pp. 625–633.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Angelsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelsky, O.V., Maksymyak, P.P., Zenkova, C.Y. et al. Current Trends in Development of Optical Metrology. Opt. Mem. Neural Networks 29, 269–292 (2020). https://doi.org/10.3103/S1060992X20040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X20040025

Keywords:

Navigation