Skip to main content
Log in

Modeling Brain Cognitive Functions by Oscillatory Neural Networks

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We describe an oscillatory neural network designed as a system of generalized phase oscillators with a central element. It is shown that a winner-take-all principle can be realized in this system in terms of the competition of peripheral oscillators for the synchronization with a central oscillator. Several examples illustrate how this network can be used for the simulation of various cognitive functions: consecutive selection of objects in the image, visual search, and multiple object tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Cowan, N., Evolving conceptions of memory storage, selective attention and their mutual constraints within the human information processing system, Psychol. Bull., 1988, vol. 104, pp. 163–191.

    Article  Google Scholar 

  2. Baddeley, A., Exploring the central executive, Q. J. Exp. Psychol., 1996, vol. 49A, pp. 5–28.

    Article  Google Scholar 

  3. Baddeley, A., Fractionating the central executive, in Principles of Frontal Lobe Function, Stuss, D. and Knight, R.T., Eds., New York: Oxford University Press, 2002, pp. 246–260.

    Google Scholar 

  4. Kryukov, V.I., An attention model based on the principle of dominanta, in Neurocomputers and Attention I: Neurobiology, Synchronisation and Chaos, Holden, A.V. and Kryukov, V.I., Eds., Manchester and New York: Manchester Univ. Press, 1991, pp. 319–351.

    MATH  Google Scholar 

  5. Gregoriou, G.G., Gotts, S.J., Zhou, H., and Desimone, R., High-frequency, long-range coupling between prefrontal and visual cortex during attention, Science, 2009, vol. 324, pp. 1207–1210.

    Article  Google Scholar 

  6. Kuramoto, Y., Chemical Oscillations, Waves and Turbulence, Springer Science & Business Media, 2012.

    MATH  Google Scholar 

  7. Acebron, J.A., Bonilla, L.L., Perez Vicente, C.J., and Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 2005, vol. 77, pp. 37–185.

    Article  Google Scholar 

  8. Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C., Synchronization in complex networks, Phys. Rep., 2008, vol. 469, pp. 93–153.

    Article  MathSciNet  Google Scholar 

  9. Burylko, O., Kazanovich, Y., and Borisyuk, R., Winner-take-all in a phase oscillator system with adaptation, Sci. Rep., 2018, vol. 8, article 416.

    Article  Google Scholar 

  10. Borisyuk, R. and Kazanovich, Y., Oscillatory model of attention-guided object selection and novelty detection, Neural Networks, 2004, vol. 17, pp. 899–915.

    Article  Google Scholar 

  11. Wolfe, J.M., Guided Search 4.0: Current progress with a model of visual search, in Integrated Models of Cognitive Systems, Gray, W., Ed., New York: Oxford, 2007, pp. 99–119.

  12. Treisman, A.M. and Gelade, G., A feature-integration theory of attention, Cognit. Psychol., 1980, vol. 12, pp. 97–136.

    Article  Google Scholar 

  13. Wolfe, J.M., Palmer, E.M., and Horowitz, T.S., Reaction time distributions constrain models of visual search, Vision Res., 2010, vol. 50, pp. 1304–1311.

    Article  Google Scholar 

  14. Moran, R., Zehetleitner, M., Müller, H.J., and Usher, M., Competitive guided search: Meeting the challenge of benchmark RT distributions, J. Vision, 2013, vol. 13, no. 8, pp. 1–31.

    Article  Google Scholar 

  15. Palmer, E.M., Horowitz, T.S., Torralba, A., and Wolfe, J.M., What are the shapes of response time distributions in visuals search?, J. Exp. Psychol. Hum. Percept. Perform., 2011, vol. 37, pp. 58–71.

    Article  Google Scholar 

  16. Kazanovich, Y. and Borisyuk, R., Reaction times in visual search can be explained by a simple model of neural synchronization, Neural Networks, 2017, vol. 87, pp. 1–7.

    Article  Google Scholar 

  17. Pylyshyn, Z.W. and Storm, R.W., Tracking multiple independent targets: Evidence for a parallel tracking mechanism, Spatial Vision, 1988, vol. 3, pp. 179–197.

    Article  Google Scholar 

  18. Pylyshyn, Z.W., Visual indexes, preconceptual objects, and situated vision, Cognition, 2001, vol. 80, pp. 127–158.

    Article  Google Scholar 

  19. Pylyshyn, Z.W. and Annan, V., Jr., Dynamics of target selection in multiple object tracking (MOT), Spatial Vision, 2006, vol. 19, pp. 485–504.

    Article  Google Scholar 

  20. Kazanovich, Y.B. and Borisyuk, R.M., An oscillatory neural model of multiple object tracking, Neural Comput., 2006, vol. 18, pp. 1413–1440.

    Article  MathSciNet  Google Scholar 

  21. Oksama, L. and Hyönä, J., Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach, Visual Cognit., 2004, vol. 11, pp. 631–671.

    Article  Google Scholar 

  22. Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Y.B., and Ivanitskii, G.R. Models of neural dynamics in brain information processing—the developments of 'the decade,' Phys. Usp., 2002, vol.45, pp. 1073–1095.

    Article  Google Scholar 

  23. Kazanovich, Y.B., Nonlinear dynamics modeling and information processing in the brain, Opt. Mem. Neural Networks, 2007, vol. 16, pp. 111–124.

    Article  Google Scholar 

  24. Hoppensteadt, F.C. and Izhikevich, E.M., Weakly Connected Neural Networks, New York Springer-Verlag, 1997.

    Book  Google Scholar 

  25. Singer, W. and Gray, C.M., Visual feature integration and the temporal correlation hypothesis, Ann. Rev. Neurosci., 1995, vol. 18, pp. 555–586.

    Article  Google Scholar 

  26. Chik, D., Borisyuk, R., and Kazanovich, Y., Selective attention model with spiking elements, Neural Networks, 2009, vol. 22, pp. 890–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Kazanovich.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakov Kazanovich Modeling Brain Cognitive Functions by Oscillatory Neural Networks. Opt. Mem. Neural Networks 28, 175–184 (2019). https://doi.org/10.3103/S1060992X19030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X19030044

Keywords:

Navigation