Skip to main content
Log in

Active photonic crystal cavities for optical signal integration

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We describe and numerically investigate an all-optical high-order temporal integrator based on photonic crystal nanobeam cavities. The ways to increase the time-bandwidth product of the integrator by using an active cavity are discussed. In particular, an in-plane optical pumping suggested. The model of two-component nanocavity with possibility of vertical electrical pumping is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ngo, N.Q., Design of an optical temporal integrator based on a phase-shifted Bragg grating in transmission, Opt. Lett., 2007, vol. 32, no. 20, pp. 3020–3022.

    Article  Google Scholar 

  2. Ferrera, M., et al., On-chip CMOS-compatible all-optical integrator, Nat. Commun., 2010, vol. 1, p. 1.

    Article  Google Scholar 

  3. Ding, Y., Zhang, X., Zhang, X., and Huang, D., Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit, Opt. Express., 2009, vol. 17, no. 15, pp. 12835–12848.

    Article  Google Scholar 

  4. Slavík, R., et al., Photonic temporal integrator for all-optical computing, Opt. Express., 2008, vol. 16, no. 22, pp. 18202–18214.

    Article  Google Scholar 

  5. Babiker, S.G., Shuai, Y., Sid-Ahmed, M.O., and Xie, M., One-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications, WSEAS Trans. Appl. Theor. Mechan., 2014, p. 9

    Google Scholar 

  6. Anagnostakis, E.A., A qualitative comprehension of nanophotonics, in Proceedings of the European Conference of Systems, and European Conference of Circuits Technology and Devices, and European Conference of Communications, and European Conference on Computer Science, World Scientific and Engineering Academy and Society (WSEAS), 2010, pp. 84–100.

    Google Scholar 

  7. Singh, S. and Sarin, R.K., Enhanced performance of microstrip-fed wide slot antenna using periodic gaps in dielectric substrate, in Proceedings of the 11th Conference on 11th WSEAS International Conference on Communications, vol. 11, World Scientific and Engineering Academy and Society (WSEAS), 2007, pp. 127–129.

    Google Scholar 

  8. Akahane, Y., Asano, T., Song, B.-S., and Noda, S., Fine-tuned high-Q photonic-crystal nanocavity, Opt. Express., 2005, vol. 13, no. 4, pp. 1202–1214.

    Article  Google Scholar 

  9. Liu, H.C. and Yariv, A., Designing coupled-resonator optical waveguides based on high-Q tapered gratingdefect resonators, Opt. Express., 2012, vol. 20, no. 8, pp. 9249–9263.

    Article  Google Scholar 

  10. Kazanskiy, N.L. and Serafimovich, P.G., Coupled-resonator optical waveguides for temporal integration of optical signals, Opt. Express., 2014, vol. 22, no. 11, pp. 14004–14013.

    Article  Google Scholar 

  11. Asghari, M.H., Wang, C., Yao, J., and Azaña, J., High-order passive photonic temporal integrators, Opt. Lett., 2010, vol. 35, no. 8, pp. 1191–1193.

    Article  Google Scholar 

  12. Quan, Q. and Loncar, M., Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities, Opt. Express., 2011, vol. 19, no. 5, pp. 18529–18542.

    Article  Google Scholar 

  13. Huang, N., Li, M., Ashrafi, R., Wang, L., Wang, X., Azaña, J., and Zhu, N., Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window, Opt. Express., 2014, vol. 22, no. 3, pp. 3105–3116.

    Article  Google Scholar 

  14. Coccioli, R., Boroditsky, M., Kim, K.W., Rahmat-Samii, Y., and Yablonovitch, E., Smallest possible electromagnetic mode volume in a dielectric cavity, Optoelectronics, IEE Proc., 1998, vol. 145, no. 6, pp. 391–397.

    Google Scholar 

  15. Zhang, Y., McCutcheon, M.W., Burgess, I.B., and Loncar, M., Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities, Opt. Lett., 2009, vol. 34, no. 17, pp. 2694–2696.

    Article  Google Scholar 

  16. Rivoire, K., Buckley, S., and Vuckovic, J., Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion, Opt. Express., 2011, vol. 19, no. 22, pp. 22198–22207.

    Article  Google Scholar 

  17. Schriever, C., Bohley, C., and Schilling, J., Designing the quality factor of infiltrate photonic wire slot microcavities, Opt. Express., 2010, vol. 18, no. 24, pp. 25217–25224.

    Article  Google Scholar 

  18. Yamamoto, T., Notomi, M., Taniyama, H., Kuramochi, E., Yoshikawa, Y., Torii, Y., and Kuga, T., Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab, Opt. Express., 2008, vol. 16, no. 18, pp. 13809–13817.

    Article  Google Scholar 

  19. Fan, S., Winn, J.N., Devenyi, A., Chen, J.C., Meade, R.D., and Joannopoulos, J.D., Guided and defect modes in periodic dielectric waveguides, J. Opt. Soc. Am., Ser. B, 1995, vol. 12, no. 7, pp. 1267–1272.

    Article  Google Scholar 

  20. Taflove, A. and Hagness, S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Norwood, MA: Artech House, 2005.

    Google Scholar 

  21. Almeida, V.R., Xu, Q., Barrios, C.A., and Lipson, M., Guiding and confining light in void nanostructure, Opt. Lett., 2004, vol. 29, no. 11, pp. 1209–1211.

    Article  Google Scholar 

  22. Asobe, M., Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching, Opt. Fiber Technol., 1997, vol. 3, no. 2, pp. 142–148.

    Article  Google Scholar 

  23. Serafimovich, P.G., Kazanskiy, N.L., and Khonina, S.N., Two-component cavity based on a regular photonic crystal nanobeam, Appl. Opt., 2013, vol. 52, no. 23, pp. 5830–5834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Serafimovich.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serafimovich, P.G., Kazanskiy, N.L. Active photonic crystal cavities for optical signal integration. Opt. Mem. Neural Networks 24, 260–271 (2015). https://doi.org/10.3103/S1060992X15040050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X15040050

Keywords

Navigation