Skip to main content
Log in

Information optics approach in diagnostics of malignant changes of biological tissues

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

The information optics techniques, such as polarimetry and spectropolarimetry, are applied for identifying the changes of optical-geometrical structure in various biological tissues with solid tumours. It is shown that a linear dichroism appears in biological tissues (human esophagus, muscle tissue of rats, human prostate tissue, and cervical smear) with cancer diseases whose magnitude depends on the type of tissue and on the time of cancer process development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selected papers on tissue optics: applications in medical diagnostics and therapy, Tuchin, V.V., Ed., Bellingham, SPIE, vol. MS102, 1994.

  2. Tuchin, V.V., Utz, S.R., and Yaroslavsky, I.V., Tissue optics, light distribution, and spectroscopy, Opt. Eng., 1994, vol. 33, pp. 3178–3188.

    Article  Google Scholar 

  3. Alfano, R.R. and Fujimoto, J.G., Eds., Advances in optical imaging and photon migration, Topics in Optics and Photonics Series, Optical Society of America, Washington, D.C., 1996.

  4. Demos, S.G. and Alfano, R.R., Optical Polarization Imaging, Appl. Opt., 1997, vol. 36, pp. 150–155.

    Article  Google Scholar 

  5. Wang, W.B., Ali, J.H., Vitenson, J.H., Lombardo, J.M., and Alfano, R.R., Spectral polarization imaging of human prostate tissues, Proc. SPIE, 2000, vol. 3917, p. 75.

    Article  Google Scholar 

  6. Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science, Tuchin, V., ed., Kluwer Academic Publishers, 2004.

    Google Scholar 

  7. Angelsky, O.V., Ushenko, A.G., Burkovets, D.N., and Ushenko, Yu.A., Polarization visualization and selection of biotissue image two-layer scattering medium, Journal of biomedical optics, 2005, vol. 10, no. 1, p. 14010.

    Article  Google Scholar 

  8. Angelsky, O.V., Ushenko, A.G., Archelyuk, A.D., Ermolenko, S.B., and Burkovets, D.N., Structure of matrices for the transformation of laser radiation by biofractals, Quantum Electronics, 1999, vol. 29, no. 12, pp. 1074–1077.

    Article  Google Scholar 

  9. Angelsky, O.V., Polyanskii, P.V., and Felde, C.V., The emerging field of correlation optics, Optics and Photonics News, 2012, vol. 23, no. 4, pp. 25–29.

    Article  Google Scholar 

  10. Bekshaev, A.Y., Angelsky, O.V., Hanson, S.G., and Zenkova, C.Y., Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows, Phys. Rev. A, 2012, vol. 86, p. 023847.

    Article  Google Scholar 

  11. Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., Hanson, S.G., and Zenkova, C.Yu., Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles, Optics Express, 2013, vol. 21,issue 7, pp. 8922–8938.

    Article  Google Scholar 

  12. Bartel, S. and Hielscher, A.H., Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media, Appl. Opt., vol. 39, 2000, pp. 1580–1588.

    Article  Google Scholar 

  13. Wang, X. and Wang, L.V., Propagation of polarized light in birefringent turbid media: A Monte Carlo study, J. Biomed. Opt., 2002, vol. 7, pp. 279–290.

    Article  Google Scholar 

  14. Wang, X., Wang, L.V., Sun, C.-W., and Yang, C.-C., Polarized light propagation through scattering media: time-resolved Monte Carlo simulation and experiments, J. Biomed. Opt., 2003, vol. 8, pp. 608–617.

    Article  Google Scholar 

  15. Heppner, G.H., Tumor heterogeneity, Cancer Res., 1984, vol. 44, pp. 2259–2265.

    Google Scholar 

  16. Martin, D.S., Balis, M.E., Fisher, B., Frei, E., Freireich, E.J., Heppner, G.H., and Holland, J.F., “Role of murine tumor models in cancer treatment research,” Cancer Res., 1986, vol. 46, pp. 2189–2192.

    Google Scholar 

  17. Angelsky, O.V., Ushenko, A.G., Yermolenko, S.B., et al., Polarization-based visualization of multifractal structures for the diagnostics of pathological changes in biological tissues, Optics and Spectroscopy, 2000, vol. 89, pp. 799–804.

    Article  Google Scholar 

  18. Gruia, M.I., Olinescu, R., Marinescu, M., and Gruia, I., Evaluation of antioxidants role in diminution of lipid peroxidation at tumor bearer mice, Rom. J. Comp. Oncol., 2001, vol. 4, pp. 268–273.

    Google Scholar 

  19. Angelsky, O.V., Yermolenko, S.B., Prydij, O.G., Ushenko, A.G., and Ushenko, Ye.G., Polarization-interference structure of speckle fields of the rough skin surface, J. Holography Speckle, 2006, vol. 3, pp. 27–34.

    Article  Google Scholar 

  20. Angelsky, O.V., Yermolenko, S.B., Zenkova, C.Yu., and Angelskaya, A.O., Polarization manifestations of correlation (intrinsic coherence) of optical fields, Appl. Opt., 2008, vol. 47, pp. 5492–5499.

    Google Scholar 

  21. Angelsky, O.V., Demianovsky, G.V., Ushenko, A.G., Burkovets, D.N., Ushenko, Y.A., Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes, Journal of Biomedical Optics, 2004, vol. 9, no. 4, pp. 679–690.

    Article  Google Scholar 

  22. Yermolenko, S.B., Ivashko, P.V., Prydij, O.G., and Gruia, I., Statistical analysis of polarized images of biotissues for diagnose of their pathological changes, Optoelectronics and advanced materials-rapid comunications, 2010, vol. 4, no. 4, pp. 527–530.

    Google Scholar 

  23. Gruia, I., Yermolenko, S.B., Gruia, M., Ivashko, P.V., and Stefanescu, T., Spectral and biochemical methods for identification of cellular and tissues malignant changes, Optoelectronics and Advanced Materials-Rapid Communication, 2010, vol. 4, no. 4, pp. 523–526.

    Google Scholar 

  24. Angelsky, O.V., Hanson, S.G., Maksimyak, A.P., and Maksimyak, P.P., Interference diagnostics of surfaces, Optical Memory and Neural Networks (Information Optics), 2007, vol. 16, pp. 269–280.

    Article  Google Scholar 

  25. Zenkova, C.Yu., Yermolenko, S.B., Angelskaya, A.O., and Soltys, I.V., The polarization peculiarities of the correlation (intrinsic coherence) of optical fields, Optical Memory and Neural Networks (Information Optics), 2011, vol. 20, no. 4, pp. 247–254.

    Article  Google Scholar 

  26. Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., The Investigation of the peculiarities of the motion of testing nanoobjects in the inhomogeneously polarized optical field, Optical Memory and Neural Networks (Information Optics), 2012, vol. 21, no. 1, pp. 34–44.

    Article  Google Scholar 

  27. Angelskaya, A.O., Gruia, I., Yermolenko, S.B., Gruia, M., Ivashko, P.V., and Gruia, M.I., Manifestations of linear dichroism changes in cancer biotissues, Romanian Reports in Physics, 2013, vol. 65, no. 3, pp. 1052–1062.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Yermolenko.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermolenko, S.B., Peresunko, O.P., Gruia, I. et al. Information optics approach in diagnostics of malignant changes of biological tissues. Opt. Mem. Neural Networks 23, 191–199 (2014). https://doi.org/10.3103/S1060992X14030126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X14030126

Keywords

Navigation