Skip to main content
Log in

Countable infinite existentially closed models of universally axiomatizable theories

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

In the present article, we obtain a new criterion for amodel of a universally axiomatizable theory to be existentially closed. The notion of a maximal existential type is used in the proof and for investigating properties of countable infinite existentially closed structures. The notions of a prime and a homogeneous model, which are classical for the general model theory, are introduced for such structures. We study universal theories with the joint embedding property admitting a single countable infinite existentially closed model. We also construct, for every natural n, an example of a complete inductive theory with a countable infinite family of countable infinite models such that n of them are existentially closed and exactly two are homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barwise, Yu. L. Ershov, E. A. Palyutin, and A. D. Taimanov (eds.), Handbook of Mathematical Logic (North-Holland, Amsterdam, 1977).

    Google Scholar 

  2. J. Barwise and A. Robinson, “Completing theories by forcing,” Ann.Math. Logic 2, 119 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. C. Chang and H. J. Keisler, Model Theory (North-Holland, Amsterdam, 1990).

    MATH  Google Scholar 

  4. P. J. Cohen, Set Theory and the Continuum Hypothesis (W. A. Benjamin, Inc., New York–Amsterdam, 1966).

    MATH  Google Scholar 

  5. Yu. L. Ershov, “On the elementary theory of maximal normed fields,” Soviet Math., Dokl. 6, 1390 (1965) [Dokl. Akad. Nauk SSSR 165, 21 (1965)].

    MATH  Google Scholar 

  6. R. Fraisse, “Sur quelques classifications des systèmes de ré lations,” Publ. Sci. Univ. Alger, Sé r. A. 1, 35 (1955) [in French].

    MathSciNet  Google Scholar 

  7. W. Hodges, Model Theory (Cambridge University Press, Cambridge, 1993).

    Book  MATH  Google Scholar 

  8. A. Macintyre, “Omitting quantifier-free types in generic structures,” J. Symbolic Logic 37, 512 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Macintyre, “On algebraically closed groups,” Ann.Math. (2) 96, 53 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. T. Nurtazin, “Elimination of quantifiers and problems on the decidability of elementary theories,” Izv. Akad. Nauk Kazakh. SSR, Ser. Fiz.-Mat. no. 1, 51 (1986) [in Russian].

    MathSciNet  MATH  Google Scholar 

  11. A. T. Nurtazin, “Basis aggregates and two problems in the theory of Boolean algebras,” Izv. Akad. Nauk Kazakh. SSR, Ser. Fiz.-Mat. no. 3, 33 (1986) [in Russian].

    MathSciNet  MATH  Google Scholar 

  12. A. Robinson, On the Metamathematics of Algebra (North-Holland, Amsterdam, 1951).

    MATH  Google Scholar 

  13. A. Robinson, “Infinite forcing inmodel theory,” in Proc. Second Scandinavian Logic Sympos. (Oslo, 1970), 317 (North-Holland, Amsterdam, 1971).

    Google Scholar 

  14. C. Ryll-Nardzewski, “On the categoricity in power N0,” Bull. Acad. Polon. Sci., Sé r. Sci. Math. Astronom Phys. 7, 545 (1959).

    MathSciNet  MATH  Google Scholar 

  15. D. Saracino, “Model companion for N0-categorical theories,” Proc. Amer. Math. Soc. 39, 591 (1973).

    MathSciNet  MATH  Google Scholar 

  16. H. Simmons, “Existentially closed structures,” J. Symbolic Logic 37, 293 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Vaught, “Denumerable models of complete theories,” in Infinitistic Methods (Warsaw, 1959), 303 (Pergamon, Oxford, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Nurtazin.

Additional information

Original Russian Text © A.T. Nurtazin, 2015, published in Matematicheskie Trudy, 2015, Vol. 18, No. 1, pp. 48–97.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurtazin, A.T. Countable infinite existentially closed models of universally axiomatizable theories. Sib. Adv. Math. 26, 99–125 (2016). https://doi.org/10.3103/S1055134416020036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134416020036

Keywords

Navigation