Skip to main content
Log in

Finite-Element Modeling of Laser Shock Forming Technology

  • NEW TECHNOLOGIES IN MECHANICAL ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Laser shock forming is an innovative technology in which a laser shock wave induces a flexural deformation of a thin plate. Naturally, the technology of laser shock forming cannot increase the curvature of the plates indefinitely and its possibilities have limits, especially for thick plates. This article investigates the maximum convex flexural curvature of a plate that can be achieved using the technology of laser shock forming by successively increasing its main characteristics: the laser spot overlap factor, the number of repetitive laser pulses, and the intensity of laser power density. The resulting flexural torque and bending curvature are calculated from the average residual stresses obtained by the finite element method. The proposed method for predicting the plate curvature can effectively predict the flexural behavior of the plate. This allows one to plan the process of laser shock forming properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Peng, Y., Chen, J., Yang, L., and Wang, Y., Study on elongation after shot peen forming for integral panel of large aircraft, Aeronaut. Manuf. Technol., 2017, vol. 57, no. 9, p. 97.

    Google Scholar 

  2. Hu, Yo., Luo, M., and Yao, Z., Increasing the capability of laser peen forming to bend titanium alloy sheets with laser-assisted local heating, Mater. Des., 2016, vol. 90, no. 90, pp. 364–372. https://doi.org/10.1016/j.matdes.2015.10.128

    Article  Google Scholar 

  3. Zhou, W.F., Ren, X.D., Wang, C.C., Yang, X.Q., and Larson, E.A., Residual stress induced convex bending in laser peen formed aluminum alloy, J. Laser Appl., 2018, vol. 30, no. 1, p. 12001. https://doi.org/10.2351/1.5012962

    Article  Google Scholar 

  4. Hu, Y.X. and Yao, Z.Q., Fem simulation of residual stresses induced by laser shock with overlapping laser spots, Acta Metall. Sin. (Engl. Lett.), 2008, vol. 21, no. 2, pp. 125–132. https://doi.org/10.1016/s1006-7191(08)60029-0

  5. Behera, A., Sahu, P.S., and Patel, S.K., Application of Taguchi methodology for optimization of process parameters in laser bending of Al sheet, Mater. Today: Proc., 2020, vol. 26, no. 26, pp. 2323–2327. https://doi.org/10.1016/j.matpr.2020.02.500

    Article  Google Scholar 

  6. Hu, Yo., Xu, X., Yao, Z., and Hu, J., Laser peen forming induced two way bending of thin sheet metals and its mechanisms, J. Appl. Phys., 2010, vol. 108, no. 7, p. 73117. https://doi.org/10.1063/1.3486218

    Article  Google Scholar 

  7. Hu, Yo., Han, Ye., Yao, Z., and Hu, J., Three-dimensional numerical simulation and experimental study of sheet metal bending by laser peen forming, J. Manuf. Sci. Eng., 2010, vol. 132, no. 6, p. 61001. https://doi.org/10.1115/1.4002585

    Article  Google Scholar 

  8. Luo, M., Hu, Yo., Hu, L., and Yao, Z., Efficient process planning of laser peen forming for complex shaping with distributed eigen-moment, J. Mater. Process. Technol., 2020, vol. 279, p. 116588. https://doi.org/10.1016/j.jmatprotec.2020.116588

    Article  Google Scholar 

  9. Sagisaka, Yo., Kamiya, M., Matsuda, M., and Ohta, Yu., Thin-sheet-metal bending by laser peen forming with femtosecond laser, J. Mater. Process. Technol., 2010, vol. 210, no. 15, pp. 2304–2309. https://doi.org/10.1016/j.jmatprotec.2010.08.025

    Article  Google Scholar 

  10. Xiao, X., Li, Yo., Sun, Ya., Zhao, P., Li, Ya., and Gao, G., Prediction of peen forming stress and curvature with dynamic response of compressively prestressed target, J. Mater. Eng. Perform., 2020, vol. 29, pp. 3079–3091. https://doi.org/10.1007/s11665-020-04851-5

    Article  Google Scholar 

  11. Yang, Yu., Lu, Yi., Qiao, H., Zhao, J., Sun, B., Wu, J., and Hu, X., The effect of laser shock processing on mechanical properties of an advanced powder material depending on different ablative coatings and confinement medias, Int. J. Adv. Manuf. Technol., 2021, vol. 117, nos. 7–8, pp. 2377–2385. https://doi.org/10.1007/s00170-021-07080-9

    Article  Google Scholar 

  12. Sun, B., Qiao, H., and Zhao, J., Accurate numerical modeling of residual stress fields induced by laser shock peening, AIP Adv., 2018, vol. 8, no. 9, p. 95203. https://doi.org/10.1063/1.5039674

    Article  Google Scholar 

  13. Zhu, R., Zhang, Y.K., Sun, G.F., Li, F., Zhang, S.B., and Ni, Z.H., Numerical simulation of residual stress fields in three-dimensional flattened laser shocking of 2024 aluminum alloy, Chin. J. Lasers, 2017, vol. 44, no. 8, p. 0802007.

    Article  Google Scholar 

  14. Hu, Yo. and Grandhi, R., Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology, Surf. Coat. Technol., 2012, vol. 206, no. 15, pp. 3374–3385. https://doi.org/10.1016/j.surfcoat.2012.01.050

    Article  Google Scholar 

  15. Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V., and Vignal, V., Finite element analysis of laser shock peening of 2050-T8 aluminum alloy, Int. J. Fatigue, 2015, vol. 70, pp. 480–489. https://doi.org/10.1016/j.ijfatigue.2014.05.015

    Article  Google Scholar 

  16. Sakhvadze, G.Z., Finite element simulation of hybrid additive technology using laser shock processing, J. Mach. Manuf. Reliab., 2023, vol. 52, no. 2, pp. 170–177. https://doi.org/10.3103/S1052618823020073

    Article  Google Scholar 

  17. Sakhvadze, G.Z., Influence of biomimetic laser shock peening on the crack resistance and residual fatigue life of aluminum alloys, Russ. Eng. Res., 2022, vol. 42, no. Suppl. 1, pp. S33–S39. https://doi.org/10.3103/S1068798X23010240

  18. Sakhvadze, G.Z., Modeling of laser shock processing technology using an artificial neural network to determine the mechanical properties of the Ti–6Al–4V titanium alloy, J. Mach. Manuf. Reliab., 2022, vol. 51, no. 8, pp. 831–839. https://doi.org/10.3103/S1052618822080167

    Article  Google Scholar 

  19. Chen, D., Cheng, Z.Q., Cunningham, P.R., and Xiong, J., Fatigue life prediction of 2524-T3 and 7075-T62 thin-sheet aluminium alloy with an initial impact dent under block spectrum loading, Fatigue Fract. Eng. Mater. Struct., 1096, vol. 44, no. 4, pp. 1096–1113. https://doi.org/10.1111/ffe.13416

  20. Vukelić, S., Kysar, J.W., and Lawrence Yao, Y.L., Grain boundary response of aluminum bicrystal under micro scale laser shock peening, Int. J. Solids Struct., 2013, vol. 46, nos. 18–19, pp. 3323–3335. https://doi.org/10.1016/j.ijsolstr.2009.04.021

    Article  Google Scholar 

  21. Mylavarapu, P., Bhat, C., Perla, M.K.R., Banerjee, K., Gopinath, K., and Jayakumar, T., Identification of critical material thickness for eliminating back reflected shockwaves in laser shock peening—A numerical study, Opt. Laser Technol., 2021, vol. 142, p. 107217. https://doi.org/10.1016/j.optlastec.2021.107217

    Article  Google Scholar 

  22. Hu, Yo. and Yao, Z., Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser, Surf. Coat. Technol., 2008, vol. 202, no. 8, pp. 1517–1525. https://doi.org/10.1016/j.surfcoat.2007.07.008

    Article  Google Scholar 

  23. Cao, Yu., Feng, A., and Hua, G., Influence of interaction parameters on laser shock wave induced dynamic strain on 7050 aluminum alloy surface, J. Appl. Phys., 2014, vol. 116, no. 15, p. 775. https://doi.org/10.1063/1.4898689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zh. Sakhvadze.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhvadze, G.Z. Finite-Element Modeling of Laser Shock Forming Technology. J. Mach. Manuf. Reliab. 52, 500–508 (2023). https://doi.org/10.3103/S105261882305014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S105261882305014X

Keywords:

Navigation