Skip to main content
Log in

An Expert System for an Intelligent Technological Complex for Complicated Surface Processing

  • AUTOMATION AND CONTROL IN ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The features of conducting the finishing operations for processing complicated surfaces by the example of processing the blade airfoil of gas turbine engines are presented: their automation requires application of intelligent control systems. We present the requirements for industrial robot control systems applied in the finishing operations for treatment complicated surfaces and propose the structure and composition of an expert system for a rule-based robotic complex. A description and modeling of a simulation model are presented, including a dynamic model of an industrial robot and the technology used to analyze the technological process and to select the processing program. We present the results of modeling the technological system and the procedure for selecting the program for the KR 10 R1420 industrial robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Krymov, V.V., Eliseev, Yu.S., and Zudin, K.I., Proizvodstvo lopatok gazoturbinnykh dvigatelei (Production of Gas Turbine Engine Blades), Moscow: Mashinostroenie, 2002.

  2. Boguslaev, V.A., Muravchenko, F.M., Zhemanyuk, P.D, Kolesnikov, V.I., Yatsenko, V.K., Kachan, A.Ya., Tsivirko, E.I., Orlov, M.R., Zamkovoi, V.E., Mozgovoi, V.F., and Rubel’, O.V., Tekhnologicheskoe obespechenie ekspluatatsionnykh kharakteristik detalei GTD (Technological Maintenance of Operational Characteristics of Gas Turbine Engine Parts), Ch. 1: Lopatki kompressora i ventilyatora (Compressor and Fan Blades), Zaporozh’e: OAO Motor SICh, 2003.

  3. Demin, F.I., Pronichev, N.D., and Shitarev, I.L., Tekhnologiya izgotovleniya osnovnykh detalei gazoturbinnykh dvigatelei (Technology for Production of Basic Parts of Gas Turbine Engines), Samara: SGAU, 2012, 2nd ed.

  4. Xiaoqi, C., Zhiming, G., and Han, H., Development of robotic system for 3D profile grinding and polishing, SIMTech Technical Report AT/00/012/AMP, 2000.

  5. Huang, H., Gong, Z.M., Chen, X.Q., and Zhou, L., Robotic grinding and polishing for turbine-vane overhaul, J. Mater. Process. Technol., 2002, vol. 127, no. 2, pp. 140–145.  https://doi.org/10.1016/S0924-0136(02)00114-0

    Article  Google Scholar 

  6. Gong, Z.M., Chen, X.Q., and Huang, H., Optimal profile generation in distorted surface finishing, Proc. 2000 ICRA. Millenium Conf. IEEE Int. Conf. on Robotics and Automation, San Francisco, 2000, IEEE, 2000, vol. 2, pp. 1557–1562.  https://doi.org/10.1109/ROBOT.2000.844818

  7. Zhi, H., Xu, K., Shihang, C., and Fenqing, H., Kinematics analysis of abrasive belt grinding robot for aero-engine blade and its simulation, Adv. Mater. Res., 2014, vols. 889–890, pp. 1165–1169. https://doi.org/10.4028/www.scientific.net/AMR.889-890.1165

  8. Ren, X., Cabaravdic, M., Zhang, X., and Kuhlenkötter, B., A local process model for simulation of robotic belt grinding, Int. J. Mach. Tools Manuf., 2007, vol. 47, no. 6, pp. 962–970.  https://doi.org/10.1016/j.ijmachtools.2006.07.002

    Article  Google Scholar 

  9. Ren, X., Kuhlenkötter, B., and Müller, H., Simulation and verification of belt grinding with industrial robots, Int. J. Mach. Tools Manuf., 2006, vol. 46, nos. 7–8, pp. 708–716.  https://doi.org/10.1016/j.ijmachtools.2005.07.033

    Article  Google Scholar 

  10. Wei, W. and Chao, Y., A path planning method for robotic belt surface grinding, Chin. J. Aeronaut., 2011, vol. 24, no. 4, pp. 520–526.  https://doi.org/10.1016/S1000-9361(11)60060-5

    Article  Google Scholar 

  11. Kazerounian, K., Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques, Rob. Comput.-Integr. Manuf., 2009, vol. 25, no. 1, pp. 204–210.  https://doi.org/10.1016/j.rcim.2007.11.005

    Article  Google Scholar 

  12. Afonin, V.L., Ilyukhin, Yu.V., Yakovlev, M.G., Smolentsev, A.N., and Nazarov, I.A., Intelligent robotic system for finishing the flow part of the blades of gas turbine engines, Vestn. Mosk. Gos. Tekh. Univ. Stankin, 2019, no. 3, pp. 49–56.

  13. Saunin, V.P., Adaptive force control of manipulation robots at machining operations, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Univ. of Technology Stankin, 2001.

  14. Zhang, J., Liu, G., Zang, X., and Li, L., A hybrid passive/active force control scheme for robotic belt grinding system, 2016 Proc. of IEEE Int. Conf. on Mechatronics and Automation, Harbin, China, 2016, IEEE, 2016, pp. 737–742.  https://doi.org/10.1109/ICMA.2016.7558654

  15. Fu, K.S., Gonzalez, R., and Lee, C.S.G., Robotics: Control, Sensing, Vision, and Intelligence, New York: McGraw-Hill, 1987.

    Google Scholar 

  16. Spong, M.W., Hutchinson, S., and Vidyasagar, M., Robot Dynamics and Control, New York: John Wiley and Sons, 2004.

    Google Scholar 

  17. Craig, J., Introduction to Robotics/Mechanics and Control, London: Pearson Education, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Afonin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Dikhter

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, V.L., Gavrilina, L.V. & Yakovlev, M.G. An Expert System for an Intelligent Technological Complex for Complicated Surface Processing. J. Mach. Manuf. Reliab. 51 (Suppl 1), S109–S119 (2022). https://doi.org/10.3103/S1052618822090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618822090023

Keywords:

Navigation