Skip to main content
Log in

Investigation of deformation behavior and fracture of ceramic coatings by the acoustic emission method

  • New Technologies in Manufacturing
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2017

This article has been updated

Abstract

The use of protective coatings on components of machines and mechanisms provides the greatest economic benefit at the lowest additional cost. Plasma spraying is one of the most productive, technologically advanced, and efficient methods of producing these coatings. The results of investigations of structures, mechanical properties, and fracture surfaces of ceramic wear resistant coatings produced by plasma spraying have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 27 February 2018

    The author?s name E. Snachez should read E. Sanchez.

  • 27 February 2018

    The author?s name E. Snachez should read E. Sanchez.

  • 27 February 2018

    The author?s name E. Snachez should read E. Sanchez.

  • 27 February 2018

    The author?s name E. Snachez should read E. Sanchez.

  • 27 February 2018

    The author?s name E. Snachez should read E. Sanchez.

  • 27 February 2018

    The author?s name E. Snachez should read E. Sanchez.

References

  1. Cartier, M., Handbook of Surface Treatments and Coatings. Tribology in Practice Series, London: Professional Engineering Publishing, 2003.

    Google Scholar 

  2. Lesyevskii, L.N., Lezhnev, L.Yu., Lyakhovetskii, M.A., et al., Inorganic solid lubricating coatings for heat engines and power plants, J. Mach. Manuf. Reliab., 2015, vol. 44, no. 5, pp. 455–463.

    Article  Google Scholar 

  3. Bhushan, B., Handbook of Tribology. Materials, Coatings, and Surface Treatments, New York: McGraw Hill, 1991, pp. 14–68.

    Google Scholar 

  4. Bansal, P., Padture, N.P., and Vasiliev, A., Improved interfacial mechanical properties of Al2O3–13 wt % TiO2 plasma-sprayed coatings derived from nanocrystalline powders, Acta Mater., 2003, vol. 51, pp. 2959–2970.

    Article  Google Scholar 

  5. Cox, L.C., The four-point bend test as a tool for coating characterization, Surf. Coat. Technol., 1988, vol. 36, pp. 807–815.

    Article  Google Scholar 

  6. Dunegan, H.L., Location of leaks in pipes by use of acoustic emission modal ratio techniques, Met. Eng. Quart., 1975, pp. 8–16.

    Google Scholar 

  7. Miguel, J.M., Guilemany, J.M., Mellor, B.G., et al., Acoustic emission study on WC-Co thermal sprayed coatings, Mater. Sci. Eng., 2003, vol. 352, pp. 55–63.

    Article  Google Scholar 

  8. Dalmas, D., Benmedakhene, S., Richard, C., et al., Caractérisation par émission acoustique de l’adhérence et de l’endommagement d’un revêtement: cas d’un revêtement WC-Co sur acier Chimie, Chemistry, 2001, no. 4, pp. 345–350.

    Google Scholar 

  9. Roques, A., Browne, M., Thompson, J., et al., Drug delivery systems in cancer therapy, Biomat., 2004, vol. 25, pp. 769–778.

    Article  Google Scholar 

  10. Gell, M., Jordan, E.H., Sohn, Y.H., et al., Development and implementation of plasma sprayed nanostructured ceramic coatings, Surf. Coat. Teclmol., 2001, vol. 14, pp. 648–654.

    Google Scholar 

  11. Goberman, D., Sohn, Y.H., Shaw, L., et al., Microstructure development of Al2O3–13 wt % TiO2 plasma sprayed coatings derived from nanocrystalline powders, Acta Mater., 2002, vol. 50, pp. 1141–1152.

    Article  Google Scholar 

  12. Salvador, M.D., Klyatskina, E., Bonache, V., et al., Estudio por emisión acustica del comportamiento a flexión de recubrimientos WC-Co obtenidos por plasma atmosférico, Revista Metalurg., 2007, vol. 43, pp. 414–423.

    Article  Google Scholar 

  13. Lin, C.K., Bernd, C.C., Leigh, S.H., et al., Modelling of elastic constants of plasma spray deposits with ellipsoid- shaped voids, J. Am. Ceram. Soc., 1997, vol. 80, pp. 2382–2394.

    Article  Google Scholar 

  14. Kabacoff, L., Opportunities in protection materials science and technology for future army applications, AMPTIAC Newslett., 2002, no. 6, pp. 37–43.

    Google Scholar 

  15. Hanshin Choi, C.L. and Kim, H.J., Processing and characterization of alumina/chromium carbide ceramic nanocomposite, J. Ceram. Processing Res., 2002, no. 3, pp. 210–215.

    Google Scholar 

  16. Carpio, P., Blochet, Q., Pateyron, B., et al., Correlation of thermal conductivity of suspension plasma sprayed yttria stabilized zirconia coatings with some microstructural effects, Mater. Lett., 2013, vol. 107, pp. 370–373.

    Article  Google Scholar 

  17. Wang, W.Q., Sha, C.K., Sun, D.Q., and Gu, X.Y., Preparation and characterization of nanostructured Al2O3–13 wt % TiO2 ceramic coatings by plasma spraying, Mater. Sci. Eng., 2006, vol. 424, pp. 1–5.

    Article  Google Scholar 

  18. Liang, B. and Ding, C., Microstructure analyses and thermo-physical properties of nanostructured thermal barrier coatings, Surf. Coat. Technol., 2005, vol. 197, pp. 185–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Klyatskina or V. V. Stolyarov.

Additional information

Original Russian Text © E.A. Klyatskina, M.D. Salvador, E.F. Segovia, P. Carpio, A. Borrell, E. Snachez, V.V. Stolyarov, 2017, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2017, No. 2, pp. 97–105.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyatskina, E.A., Salvador, M.D., Segovia, E.F. et al. Investigation of deformation behavior and fracture of ceramic coatings by the acoustic emission method. J. Mach. Manuf. Reliab. 46, 174–180 (2017). https://doi.org/10.3103/S1052618817020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618817020078

Navigation