Skip to main content
Log in

Physical and numerical modeling of the process of rolling off of a tapered shaft of aviation purpose

  • New Technologies in Mechanical Engineering
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

One of the most promising methods of manufacturing axisymmetric parts of gas turbine engines is local deformation on specialized rolling mills. To design this class of manufacturing operations and equipment, it is effective to use physical and numerical modeling. The article has provided the method and results of physical and numerical finite-element modeling of local deformation process of a detail of a cone-with-cylinder type made of EI962–Sh chromium steel. Analyses of the energy-power parameters of the technical process and the possibility of the destruction of a part during the deformation process have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Utyashev, F.Z., Burlakov, I.A., Geikin, V.A., Morozov, V.V., Mulyukov, R.R., Nazarov, A.A., and Yu, R., Scientific fundamentals of high-efficiency roll forming technology for axially symmetrical parts of a gas-turbine engine rotor of high-temperature alloy, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 5, pp. 419–426.

    Article  Google Scholar 

  2. Hua, F.A., Yang, Y.S., Zhang, Y.N., et al., Three-dimensional finite element analysis of tube spinning, J. Mater. Process. Technol., 2005, vol. 168, no. 1, pp. 68–74.

    Article  Google Scholar 

  3. Mohebbi, M.S. and Akbarzadeh, A., Experimental study and fem analysis of redundant strains in flow forming of tubes, J. Mater. Process. Technol., 2010, vol. 210, no. 2, pp. 389–395.

    Article  Google Scholar 

  4. Zhan, M., Yang, H., Zhang, J.H., et al., 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning, J. Mater. Process. Technol., 2007, vol. 187, pp. 486–491.

    Article  Google Scholar 

  5. Sukhorukov, R.Yu., Sidorov, A.A., Utyashev, F.Z., et al., The way to determine power parameters of isothermal rolling of critical parts of gas-turbine engines, Probl. Mashinostr. Avtomatiz., 2015, no. 1, pp. 116–122.

    Google Scholar 

  6. Sukhorukov, R.Yu., Sidorov, A.A., Ibragimov, A.R., and Utyashev, F.Z., Mathematical simulation of axialsymmetrical aircraft elements manufacturing by means of local deformation, Pis’ma Mater., 2015, vol. 5, no. 2(18), pp. 175–178.

    Google Scholar 

  7. Wong, C.C., Dean, T.A., and Lin, J., A review of spinning, shear forming and flow forming processes, Int. J. Mach. Tools Manuf., 2003, vol. 43, no. 14, pp. 1419–1435.

    Article  Google Scholar 

  8. Sukhorukov R.Yu., et al., Physical and Mathematics simulation of aircraft cone shaft rolling, Tr. IV mezhd. nauch. konf. “Fundamental’nye issledovaniya i innovatsionnye tekhnologii v mashinostroenii” (Proc. 4th Int. Sci. Conf. “Fundamental Research and Innovation Technologies in Machinery Manufacturing”), Moscow, 2015, pp. 248–251.

    Google Scholar 

  9. Mukhtarov, Sh.Kh., Nagimov, M.I., Zakirova, A.A., Klassman, P.A., and Utyashev, F.Z., Development of rotation drawing process for cone elements made of sheet material, Perspekt. Mater., 2013, special issue no. 15, pp. 92–96.

    Google Scholar 

  10. Xia, Q., Shima, S., Kotera, H., and Yasuhuku, D., A study of the one-path deep drawing spinning of cups, J. Mater. Process. Technol., 2005, vol. 159, no. 3, pp. 397–400.

    Article  Google Scholar 

  11. Valitov, V.A., Mulyukov, R.R., Nazarov, A.A., Sukhorukov, R.Yu., and Utyashev, F.Z., Application of superplasticity effect for rolling the gas-turbine disks made of heat proof nickel alloys, Probl. Mashinostr. Avtomatiz., 2013, no. 3.

  12. Utyashev, F.Z. and Raab, G.I., Deformatsionnye metody polucheniya i obrabotki ul’tramelkozernistykh i nanostrukturnykh materialov (Deformation Methods for Manufacturing and Processing Ultra-Fine-Grain and Nanostructured Materials), Ufa: Bashkirskaya Entsiklopediya, 2013.

    Google Scholar 

  13. Alyushin, Yu.A., Metod verkhnei otsenki i ego primenenie pri reshenii zadach obrabotki metallov davleniem (Upper-Bound Approach Technique and Its Application for Solving Problems on Metals Processing by Pressure), Rostov-on-Don: Rostov. Inst. S-kh. Mashinostr., 1977.

    Google Scholar 

  14. Davey, K. and Ward, M.J., An ALE approach for finite element ring-rolling simulation of profiled rings, J. Mater. Processing Technol., 2003, vol. 139, no. 1, pp. 559–566.

    Article  Google Scholar 

  15. Polukhin, P.I., Gun, G.Ya., and Galkin, A.M., Soprotivlenie plasticheskoi deformatsiya metallov i splavov. Spravochnik (Resistance against Plastic Deformation for Metals and Alloys. Handbook), Moscow: Metallurgiya, 1983.

    Google Scholar 

  16. Cockcroft, M.G. and Latham, D.J., Ductility and the workability of metals, J. Inst. Met., 1968, vol. 96, no. 1, pp. 33–39.

    Google Scholar 

  17. Zhao, D., Bandstra, J.P., and Kuhn, H.A., A new fracture criterion for fracture prediction in metalworking processes, in Concurrent Engineering Approach to Materials Processing, Dwivedi, S.N., Paul, A.J., and Dax, F.R., Eds., Warrendale: Miner., Met. Mater. Soc., 1992, pp. 107–119.

    Google Scholar 

  18. Umbrello, D., Finite element simulation of conventional and high speed machining of Ti6Al4V alloy, J. Mater. Process. Technol., 2008, vol. 196, no. 1, pp. 79–87.

    Article  Google Scholar 

  19. Ko, D.C., Kim, B.M., and Choi, J.C., Prediction of surface-fracture initiation in the axisymmetric extrusion and simple upsetting of an aluminum alloy, J. Mater. Process. Technol., 1996, vol. 62, no. 1, pp. 166–174.

    Article  Google Scholar 

  20. Landre, J., et al., On the utilization of ductile fracture criteria in cold forging, Finite Elem. Anal. Des., 2003, vol. 39, no. 3, pp. 175–186.

    Article  MATH  Google Scholar 

  21. Pshenichnyuk, A.I., Kaibyshev, O.A., and Astanin, V.V., Whether it is possible to use physical models for generating the defining correlations of superplasticity, Mat. Model. Sist. Protsess., 1998, no. 6, pp. 92–98.

    Google Scholar 

  22. Vasin, R.A., Enikeev, F.U., and Mazurski, M.I., Method to determine the strain-rate sensitivity of a superplastic material from the initial slopes of its stress-strain curves, J. Mater. Sci., 1998, vol. 33, no. 4, pp. 1099–1103.

    Article  Google Scholar 

  23. Enikeev, F.U., Mathematical modeling of the rheological behavior of superplastic materials in the processes of local shaping, Strength Mater., 2001, vol. 33, no. 1, pp. 52–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sidorov.

Additional information

Original Russian Text © R.Yu. Sukhorukov, A.A. Sidorov, A.I. Alimov, M.I. Nagimov, Sh.Kh. Mukhtarov, F.Z. Utyashev, 2016, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2016, No. 6, pp. 63–71.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhorukov, R.Y., Sidorov, A.A., Alimov, A.I. et al. Physical and numerical modeling of the process of rolling off of a tapered shaft of aviation purpose. J. Mach. Manuf. Reliab. 45, 538–545 (2016). https://doi.org/10.3103/S1052618816060121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618816060121

Navigation