Skip to main content
Log in

Periodic variational Rayleigh problem of the gas-film lubrication theory

  • Realibility, Strength, and Wear Resistance of Machines and Structures
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

A solution to the variational problem for a plain bearing (slider) on gas-film lubricant with periodicity conditions is considered. Using the calculus of variations, the shape of the lubricating layer providing maximum levitation force is determined. Along with the compressibility number, the parameters in the problem are the ceiling value of the profile function, and its limiting value corresponds to the results obtained by Rayleigh. Characteristics are presented for the optimum bearing in the case of different compressibility numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Rayleigh, Notes on the theory of lubrication, Phil. Mag., 1918, vol. 35, no. 1, pp. 1–12.

    Google Scholar 

  2. Maday, C.J., A bounded variable approach to the optimum slider bearing, Trans. ASME. Ser. F. J. Lubr. Technol., 1968, vol. 90, no. 1, pp. 240–242.

    Article  MathSciNet  Google Scholar 

  3. Maday, C.J., The one-dimensional optimum hydrodynamics gas slider bearing, Trans. ASME. Ser. F: J. Lubr. Technol., 1968, vol. 90, no. 1, pp. 281–284.

    Google Scholar 

  4. Boldyrev, Yu.Ya. and Troitskii, V.A., One variation problem on gas dynamical lubrication, in Gazovye opory turbomashin. Tr. vsesoyuz. mezhvuzovskogo soveshchaniya (Proc. Interuniversity Meeting “Gas Bearings for Turbomachines”), Kazan, 1975, pp. 11–15.

    Google Scholar 

  5. McAllister, G.T. and Rohde, S.M., An optimization problem in hydrodynamic lubrication theory, Appl. Math. Optimiz., 1976, vol. 3, no. 3.

  6. McAllister, G.T. and Rohde, S.M., Optimum design of one-dimensional journal bearings, J. Optim. Theory Appl., 1983, no. 4, pp. 599–617.

    Article  MathSciNet  MATH  Google Scholar 

  7. Boldyrev, Yu.Ya. and Slesarev, M.E., 1D radial gas bearing with maximal bearing capacity, Mashinovedenie, 1987, no. 4, pp. 97–103.

    Google Scholar 

  8. Constantinescu, V.N., Lubrificatia cu Gase, Academiei Republicii Populare Romine, 1963.

    Google Scholar 

  9. Sheinberg, S.A., Zhed’, V.P., and Shisheev, M.D., Opory skol’zheniya s gazovoi smazkoi (Sliding Bearings with Gas Lubrication), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  10. Luchin, G.A., Peshti, Yu.V., and Snopov, A.I., Gazovye opory turbomashin (Gas Bearings for Turbomachines), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  11. Maksimov, V.A., Khadiev, M.B., Khisamiev, I.G., et al., Beskontaktnye uplotneniya rotorov tsentrobezhnykh i vintovykh kompressorov (Contactless Sealings for Centrifugal and Screw Compressor’s Rotors), Kazan: FEN (Nauka), 1998.

    Google Scholar 

  12. Seleznev, K.P., Boldyrev, Yu.Ya., Grigor’ev, B.S., et al., To the problem on compressor developing compressor stations with gas pumping units located in the main gas pipeline, in Turbiny i kompressory (Turbines and Compressors), St. Petersburg: NIKTIT, 1999, issue 8, (1,2-99), pp. 69–72.

    Google Scholar 

  13. Sipenkov, I.E., Filippov, A.Yu., Boldyrev, Yu.Ya., et al., Pretsizionnye gazovye podshipniki (Precision Gas Bearings), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC, 2007.

    Google Scholar 

  14. Boldyrev, Yu.Ya., Notice on periodical variation problem for radial gas bearing, Nauch.-Tekhnich. Vedomosti St. Peterburg Gos. Politekhn. Univ., 2007, no. 1, pp. 258–262.

    Google Scholar 

  15. Boldyrev, Yu.Ya. and Petukhov, E.P., The theory of gas lubrication: periodical variation problem, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, 2015, no. 2, pp. 16–26.

    Google Scholar 

  16. Elrod, H. and Burgdorfer, A., Refinement of the theory of gas lubricated journal bearing of infinite length, Proc. 1st Int. Symp. on Gas Lubricated Bearings, Washington, 1959, pp. 93–118.

    Google Scholar 

  17. Boldyrev, Yu.Ya., Periodical variation problem related to the linear Reynolds equation, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, 1992, no. 2, pp. 3–10.

    MathSciNet  Google Scholar 

  18. Raitum, U.E., Zadachi optimal’nogo upravleniya dlya ellipticheskikh uravnenii (Optimal Control Problem for Elliptic Equations), Riga: Zinatne, 1989.

    Google Scholar 

  19. Lur’e, K.A., Optimal’noe upravlenie v zadachakh matematicheskoi fiziki (Optimal Control in Mathematical Physics Problems), Moscow: Nauka, 1978.

    Google Scholar 

  20. Boldyrev, Yu.Ya. and Smirnov, V.I., Low-loaded spherical gas bearing with periodical microprofile with maximal axial rigidity operated under low compression numbers, Trenie Iznos, 1991, vol. 12, no. 3, pp. 427–436.

    Google Scholar 

  21. Boldyrev, Yu.Ya., The way to optimize periodical profile in the problems of gas lubrication theory. Low compression numbers, Trenie Iznos, 1992, vol. 13, no. 2, pp. 280–289.

    MathSciNet  Google Scholar 

  22. Troitskii, V.A., Optimal’nye protsessy kolebanii mekhanicheskikh sistem (Optimal Oscillation Processes for Mechanical Systems), Leningrad: Mashinostroenie, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Boldyrev.

Additional information

Original Russian Text © Yu.Ya. Boldyrev, 2016, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2016, No. 4, pp. 75–82.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldyrev, Y.Y. Periodic variational Rayleigh problem of the gas-film lubrication theory. J. Mach. Manuf. Reliab. 45, 354–361 (2016). https://doi.org/10.3103/S1052618816040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618816040038

Navigation