Skip to main content
Log in

Deformational nanostructuring and treatment of metallic materials

  • New Technologies in Manufacturing
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Theoretical and practical aspects of the production and treatment of nanomaterials are presented. Metals are used to show the main evolutionary stages of the matrix structure of metallic materials during deformation and the factors influencing the reduction of grain size. The formation mechanisms of small-sized grains during cold and hot deformation are studied. An equation is developed that allows the calculation of the average size of cells in the process of formation—predecessors of small-sized grains—depending on the accumulated deformation and the scale factor. Dispersion-hardening nickel alloys are used to demonstrate the possibility of fundamental control over mechanical properties from high heat resistance to superplasticity and, inversely, as a result of deformational thermal treatment, leading to a direct and reverse inversion of nano- and micro-sized intermetallic particles and the transformation of their boundary type from coherent to incoherent. The variation in the microstructure and mechanical properties of dispersion-hardening alloys is considered for the production of key components such as the discs and shafts of gas turbine engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, R.Z. and Langdon, T.G., Bulk Nanostructured Materials: Fundamentals and Application, New Jersey: TMS Wiley, 2014.

    Google Scholar 

  2. Kaibyshev, O.A. and Utayshev, F.Z., Superplastisity: Microstructurial Refinement and Superplastic Roll Formaking, Arlington: Futurepast, 2005.

    Google Scholar 

  3. Utyashev, F.Z. and Raab, G.I., Deformatsionnye metody polucheniya i obrabotki ul’tramelkozernistykh materialov (Deformation Method for Producing and Processing Ultra-Rare-Earth Materials), UFa: Gilem, Nauch.-Izd. Kompleks Bashk. Entsikl., 2013.

    Google Scholar 

  4. Glezer, A.M. and Andrievskii, R.A., Nanostructures strength, Usp. Fiz. Nauk, 2009, vol. 179, no. 4, pp. 337–358.

    Article  Google Scholar 

  5. Utyashev, F.Z. and Raab, G.I., Power inputs and metal’s grain refinement under equal-channel angular pressing, Metally, 2002, no. 2, pp. 57–63.

    Google Scholar 

  6. Dodd, B. and Bai, Y., Mat. Sci. Techn., 1989, vol. 5, p. 559.

    Article  Google Scholar 

  7. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (High Plastic Deformations and Metals Destruction), Moscow: Metallurgiya, 1986.

    Google Scholar 

  8. Utyashev, F.Z. and Raab, G.I., Surface area of fragments, grains and sample under metals high cold deformations and the effect of deformation surface and site onto structure refinement, Fiz. Met. Metalloved., 2006, vol. 101, no. 3, pp. 311–322.

    Google Scholar 

  9. Novikov, I.I., Teoriya termicheskoi obrabotki metallov (The Theory of Metals Thermal Processing), Moscow: Metallurgiya, 1986.

    Google Scholar 

  10. Shtremel’, M.A., Prochnost’ splavov (Strength of Alloys), Moscow: National Univ. of Science and Technology “MISIS”, 1997, part 1, p. 11.

    Google Scholar 

  11. Cantor, B., Martin, J.W., and Doherty, R.D., Stability of Microstructure in Metallic Systems, Cambridge Univ. Press, 1997.

    Google Scholar 

  12. Zangwill, A., Physics at Surfaces, Cambridge Univ. Press, 1988.

    Book  Google Scholar 

  13. Utyashev, F.Z. and Raab, G.I., Effect of deformation site onto metals structure refinement, Fiz. Met. Metalloved., 2007, vol. 104, no. 6, pp. 605–617.

    Google Scholar 

  14. Utyashev, F.Z., Sovremennye metody intensivnoi plasticheskoi deformatsii (Modern Methods of Intensive Plastic Deformation), Ufa: Ufa State Aviation Technical Univ., 2008.

    Google Scholar 

  15. Utyashev, F.Z. and Raab, G.I., The model of structure refinement in metals at large deformations and factors effecting grain sizes, Rev. Adv. Mater. Sci., 2006, no. 11, pp. 137–151.

    Google Scholar 

  16. Sims, C.T., Stoloff, N.S., and Hagel, W.C., The Superalloys, New York: John Wiley & Sons, 1987.

    Google Scholar 

  17. Kaibyshev, O.A. and Utyashev, F.Z., Sverkhplastichnost’, izmel’chenie struktury i obrabotka trudnodeformiruemykh splavov (Superplasticity, Structure Refinement and Hardly Deformed Alloys Processing), Moscow: Nauka, 2002.

    Google Scholar 

  18. Utyashev, F.Z., Burlakov, I.A., Geikin, V.A., Morozov, V.V, Mulyukov, P.P., Nazarov, A.A., and Sukhorukov, R.Yu., Scientific fundamentals of high-efficiency roll forming technology for axially symmetrical parts of a gas-turbine engine rotor of high-temperature alloy, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 5, p. 419.

    Article  Google Scholar 

  19. Valitov, V.A., Mulyukov, P.P., Nazarov, A.A., Sukhorukov, R.Yu., and Utyashev, F.Z., The way to use the effect of superplasticity for rolling off gas turbine disks made of heat proof nickel alloys, Probl. Mashinostr. Avtomatiz., 2013, no. 3, pp. 51–56.

    Google Scholar 

  20. Utyashev, F.Z., Enikeev, F.U., and Latysh, V.V., Comparison of deformation methods for ultrafine-grained structure formation, Science des Materiaux on Ultra-Fine Grained Materials Produced by Severe Plastic Deformation. Annales de Chemie, 1996, vol. 21, pp. 379–389.

    Google Scholar 

  21. Utyashev, F.Z., Strain compatibility and nanostructuring of bulk metallic materials via severe plastic deformation, Mater. Sci. Forum, 2011, vols. 667–669, pp. 45–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Z. Utyashev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utyashev, F.Z., Sukhorukov, R.U. Deformational nanostructuring and treatment of metallic materials. J. Mach. Manuf. Reliab. 43, 546–554 (2014). https://doi.org/10.3103/S1052618814060132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618814060132

Keywords

Navigation