Skip to main content

Advertisement

Log in

Different expressions of latent HCMV genes in UL133–UL138 locus was associated with systemic lupus erythematosus

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (HCMV), a member of the β-herpesvirus subfamily, establishes a life-long latent infection in the majority of the worldwide human. Accumulating studies have suggested that HCMV infection was a vital risk for SLE development. However, till to now, few studies carefully evaluated the relationship between HCMV latent infection and SLE. In this study, PBMCs from 92 SLE patients, and 81 controls were collected. The expression of viral genes in the UL133–UL138 locus in the isolated PBMCs was detected by our previous two-step nested RT-PCR. The relationship between the expression of viral genes in PBMCs and clinical indicators of SLE patients were further analyzed. Data indicated that the expression prevalence of UL133–UL138 was significant higher in the SLE patients, whereas UL135 and UL136 were detected only in the PBMC of the SLE populations. Correlation analysis of the expression of HCMV UL133–UL138 in the PBMCs and clinical indicators of the SLE patients suggested that UL133, UL135, UL136 were associated with various clinical parameters of the SLE patients. Especially, the SLE individuals with positive UL135 and/or UL136 genes had pancytopenia symptoms, including lymphocytopenia, monocytopenia and oligocythemia. In conclusion, our data confirm that the HCMV latent infection might also play a vital role in both the occurrence and development of SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, M., Pan, M.R., Chen, D.Y., and Lan, J.L., Human cytomegalovirus pp65 lower matrix protein: A humoral immunogen for systemic lupus erythematosus patients and autoantibody accelerator for NZB/W F1 mice, Clin. Exp. Immunol., 2006, vol. 143, pp. 167–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hrycek, A., Kusmierz, D., Mazurek, U., and Wilczok, T., Human cytomegalovirus in patients with systemic lupus erythematosus, Autoimmunity, 2005, vol. 38, pp. 487–491.

    Article  PubMed  Google Scholar 

  3. Hsieh, A.H., Jhou, Y.J., Liang, C.T., Chang, M., and Wang, S.L., Fragment of tegument protein pp65 of human cytomegalovirus induces autoantibodies in BALB/c mice, Arthritis Res. Ther., 2011, vol. 13, p. R162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rider, J.R., Ollier, W.E., Lock, R.J., Brookes, S.T., and Pamphilon, D.H., Human cytomegalovirus infection and systemic lupus erythematosus, Clin. Exp. Rheumatol., 1997, vol. 15, pp. 405–409.

    CAS  PubMed  Google Scholar 

  5. Zhang, C., Shen, K., Jiang, Z., and He, X., Early diagnosis and monitoring of active HCMV infection in children with systemic lupus erythematosus, Chin. Med. J., 2001, vol. 114, pp. 1309–1312.

    CAS  PubMed  Google Scholar 

  6. Curtis, H.A., Singh, T., and Newkirk, M.M., Recombinant cytomegalovirus glycoprotein gB (UL55) induces an autoantibody response to the U1-70 kDa small nuclear ribonucleoprotein, Eur. J. Immunol., 1999, vol. 29, pp. 3643–3653.

    Article  CAS  PubMed  Google Scholar 

  7. Newkirk, M.M., van Venrooij, W.J., and Marshall, G.S., Autoimmune response to U1 small nuclear ribonucleoprotein (U1 snRNP) associated with cytomegalovirus infection, Arthritis Res., 2001, vol. 3, pp. 253–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng, H.M. and Khairullah, N.S., Induction of antiphospholipid autoantibody during cytomegalovirus infection, Clin. Infect. Dis., 1997, vol. 25, pp. 1493–1494.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, J., Cytomegalovirus infection induces expression of 60 KD/Ro antigen on human keratinocytes, Lupus, 1995, vol. 4, pp. 396–406.

    Article  CAS  PubMed  Google Scholar 

  10. Chan, G., Bivins-Smith, E.R., Smith, M.S., Smith, P.M., and Yurochko, A.D., Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage, J. Immunol., 2008, vol. 181, pp. 698–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zandman-Goddard, G. and Shoenfeld, Y., Infections and SLE, Autoimmunity, 2005, vol. 38, pp. 473–485.

    Article  CAS  PubMed  Google Scholar 

  12. Reeves, M. and Sinclair, J., Aspects of human cytomegalovirus latency and reactivation, Curr. Top. Microbiol. Immunol., 2008, vol. 325, pp. 297–313.

    CAS  PubMed  Google Scholar 

  13. Burbano, C., Vasquez, G., and Rojas, M., Modulatory effects of CD14+CD16++ monocytes on CD14++CD16–monocytes: A possible explanation of monocyte alterations in systemic lupus erythematosus, Arthritis Rheumatol., 2014, vol. 66, pp. 3371–3381.

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y., Lee, P.Y., and Reeves, W.H., Monocyte and macrophage abnormalities in systemic lupus erythematosus, Arch. Immunol. Ther. Exp., 2010, vol. 58, pp. 355–364.

    Article  CAS  Google Scholar 

  15. Palafox Sanchez, C.A., Satoh, M., Chan, E.K., Carcamo, W.C., Munoz Valle, J.F., Orozco Barocio, G., Oregon Romero, E., Navarro Hernandez, R.E., Salazar Paramo, M., Cabral Castaneda, A., and Vazquez Del Mercado, M., Reduced IgG anti-small nuclear ribonucleoprotein autoantibody production in systemic lupus erythematosus patients with positive IgM anticytomegalovirus antibodies, Arthritis Res. Ther., 2009, vol. 11, p. R27.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, J., Zhang, H., Chen, P., Lin, Q., Zhu, X., Zhang, L., and Xue, X., Correlation between systemic lupus erythematosus and cytomegalovirus infection detected by different methods, Clin. Rheumatol., 2015, vol. 34, pp. 691–698.

    Article  PubMed  Google Scholar 

  17. Rossetto, C.C., Tarrant-Elorza, M., and Pari, G.S., Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14(+) monocytes and CD34(+) cells, PLoS Pathog., 2013, vol. 9, p. e1003366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kondo, K., Xu, J., and Mocarski, E.S., Human cytomegalovirus latent gene expression in granulocytemacrophage progenitors in culture and in seropositive individuals, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 11137–11142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lunetta, J.M. and Wiedeman, J.A., Latency-associated sense transcripts are expressed during in vitro human cytomegalovirus productive infection, Virology, 2000, vol. 278, pp. 467–476.

    Article  CAS  PubMed  Google Scholar 

  20. White, K.L., Slobedman, B., and Mocarski, E.S., Human cytomegalovirus latency-associated protein pORF94 is dispensable for productive and latent infection, J. Virol., 2000, vol. 74, pp. 9333–9337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bego, M., Maciejewski, J., Khaiboullina, S., Pari, G., and St. Jeor, S., Characterization of an antisense transcript spanning the UL81-82 locus of human cytomegalovirus, J. Virol., 2005, vol. 79, pp. 11022–11034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jenkins, C., Abendroth, A., and Slobedman, B., A novel viral transcript with homology to human interleukin- 10 is expressed during latent human cytomegalovirus infection, J. Virol., 2004, vol. 78, pp. 1440–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goodrum, F., Reeves, M., Sinclair, J., High, K., and Shenk, T., Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro, Blood, 2007, vol. 110, pp. 937–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grainger, L., Cicchini, L., Rak, M., Petrucelli, A., Fitzgerald, K.D., Semler, B.L., and Goodrum, F., Stress-inducible alternative translation initiation of human cytomegalovirus latency protein pUL138, J. Virol., 2010, vol. 84, pp. 9472–9486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petrucelli, A., Rak, M., Grainger, L., and Goodrum, F., Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus, J. Virol., 2009, vol. 83, pp. 5615–5629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Umashankar, M., Petrucelli, A., Cicchini, L., Caposio, P., Kreklywich, C.N., Rak, M., Bughio, F., Goldman, D.C., Hamlin, K.L., Nelson, J.A., Fleming, W.H., Streblow, D.N., and Goodrum, F., A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection, PLoS Pathog., 2011, vol. 7, p. e1002444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petrucelli, A., Umashankar, M., Zagallo, P., Rak, M., and Goodrum, F., Interactions between proteins encoded within the human cytomegalovirus UL133–UL138 locus, J. Virol., 2012, vol. 86, pp. 8653–8662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, W., Taylor, S.L., Leisenfelder, S.A., Morton, R., Moffat, J.F., Smirnov, S., and Zhu, H., Human cytomegalovirus genes in the 15-kilobase region are required for viral replication in implanted human tissues in SCID mice, J. Virol., 2005, vol. 79, pp. 2115–2123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Umashankar, M., Petrucelli, A., Cicchini, L., Caposio, P., Kreklywich, C.N., Rak, M., Bughio, F., Goldman, D.C., Hamlin, K.L., Nelson, J.A., Fleming, W.H., Streblow, D.N., and Goodrum, F., A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection, PLoS Pathog., 2011, vol. 7, p. e1002444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bughio, F., Umashankar, M., Wilson, J., and Goodrum, F., Human cytomegalovirus UL135 and UL136 genes are required for postentry tropism in endothelial cells, J. Virol., 2015, vol. 89, pp. 6536–6550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bombardier, C., Gladman, D.D., Urowitz, M.B., Caron, D., and Chang, C.H., Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE, Arthritis Rheum., 1992, vol. 35, pp. 630–640.

    Article  CAS  PubMed  Google Scholar 

  32. Jin, J., Hu, C., Wang, P., Chen, J., Wu, T., Chen, W., Ye, L., Zhu, G., Zhang, L., Xue, X., and Shen, X., Latent infection of human cytomegalovirus is associated with the development of gastric cancer, Oncol. Lett., 2014, vol. 8, pp. 898–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Slobedman, B. and Mocarski, E.S., Quantitative analysis of latent human cytomegalovirus, J. Virol., 1999, vol. 73, pp. 4806–4812.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Westerweel, P.E., Luijten, R.K., Hoefer, I.E., Koomans, H.A., Derksen, R.H., and Verhaar, M.C., Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus, Ann. Rheum. Dis., 2007, vol. 66, pp. 865–870.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun, L.Y., Zhou, K.X., Feng, X.B., Zhang, H.Y., Ding, X.Q., Jin, O., Lu, L.W., Lau, C.S., Hou, Y.Y., and Fan, L.M., Abnormal surface markers expression on bone marrow CD34+ cells and correlation with disease activity in patients with systemic lupus erythematosus, Clin. Rheumatol., 2007, vol. 26, pp. 2073–2079.

    Article  PubMed  Google Scholar 

  36. Papadaki, H.A., Boumpas, D.T., Gibson, F.M., Jayne, D.R., Axford, J.S., Gordon-Smith, E.C., Marsh, J.C., and Eliopoulos, G.D., Increased apoptosis of bone marrow CD34(+) cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus, Br. J. Haematol., 2001, vol. 115, pp. 167–174.

    Article  CAS  PubMed  Google Scholar 

  37. Statkute, L., Verda, L., Oyama, Y., Traynor, A., Villa, M., Shook, T., Clifton, R., Jovanovic, B., Satkus, J., Loh, Y., Quigley, K., Yaung, K., Gonda, E., Krosnjar, N., Spahovic, D., and Burt, R.K., Mobilization, harvesting and selection of peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation, Bone Marrow Transplant., 2007, vol. 39, pp. 317–329.

    Article  CAS  PubMed  Google Scholar 

  38. Loh, Y., Oyama, Y., Statkute, L., Quigley, K., Yaung, K., Gonda, E., Barr, W., Jovanovic, B., Craig, R., Stefoski, D., Cohen, B., and Burt, R.K., Development of a secondary autoimmune disorder after hematopoietic stem cell transplantation for autoimmune diseases: Role of conditioning regimen used, Blood, 2007, vol. 109, p. 2643.

    Article  CAS  PubMed  Google Scholar 

  39. Pyrovolaki, K., Mavroudi, I., Sidiropoulos, P., Eliopoulos, A.G., Boumpas, D.T., and Papadaki, H.A., Increased expression of CD40 on bone marrow CD34+ hematopoietic progenitor cells in patients with systemic lupus erythematosus: contribution to Fas-mediated apoptosis, Arthritis Rheum., 2009, vol. 60, pp. 543–552.

    Article  CAS  PubMed  Google Scholar 

  40. Montag, C., Wagner, J.A., Gruska, I., Vetter, B., Wiebusch, L., and Hagemeier, C., The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor alpha (TNF-alpha) signaling by upregulating TNF-alpha receptor 1 cell surface expression, J. Virol., 2011, vol. 85, pp. 11409–11421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Le, V.T., Trilling, M., and Hengel, H., The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-alpha signaling, J. Virol., 2011, vol. 85, pp. 13260–13270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stanton, R.J., Prod’homme, V., Purbhoo, M.A., Moore, M., Aicheler, R.J., Heinzmann, M., Bailer, S.M., Haas, J., Antrobus, R., Weekes, M.P., Lehner, P.J., Vojtesek, B., Miners, K.L., Man, S., Wilkie, G.S., Davison, A.J., Wang, E.C., Tomasec, P., and Wilkinson, G.W., HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells, Cell Host Microbe, 2014, vol. 16, pp. 201–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Xue.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Chen, J., Zhang, H. et al. Different expressions of latent HCMV genes in UL133–UL138 locus was associated with systemic lupus erythematosus. Mol. Genet. Microbiol. Virol. 32, 116–124 (2017). https://doi.org/10.3103/S0891416817020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416817020045

Keywords

Navigation