Skip to main content
Log in

Acoustic Gravity Waves with Height-Independent Amplitude in the Isothermal Atmosphere

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Acoustic gravity wave modes in the Earth’s thermosphere, the amplitude of which does not depend on height, are theoretically investigated. These studies are stimulated by satellite observations, according to which the amplitudes of acoustic gravity waves in the polar thermosphere do not show dependence on height in the altitude range of 250–450 km. It is shown that the propagation of acoustic gravity wave modes with the height-independent amplitude should be considered as an oscillatory process that occurs simultaneously at two natural frequencies. The dispersion equation for these waves is obtained. According to the frequency–wave vector diagnostic diagram, the dispersion dependence of waves with the constant amplitude is in the region that is prohibited for free propagation. It separates the waves propagating horizontally, in which the amplitude in the vertical direction increases from waves with the amplitude decreasing in the vertical direction. Solutions are found for the perturbed quantities in the two-frequency mode of oscillations. It is noted that the superposition of a few of such modes can lead to the emergence of complex resulting motions close to turbulent ones. It is shown that there is a selected quasi-harmonic mode with the constant amplitude, which is characterized by a fixed frequency and wavelength. It is concluded that this kind of wave mode with the height-independent amplitude of the perturbed values prevails in the observations in the Earth’s polar thermosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. I. Kryuchkov, I. T. Zhuk, and O. K. Cheremnykh, “Two-frequency acoustic–gravitational waves and simulation of satellite measurements,” Kinematics Phys. Celestial Bodies 36, 265–273 (2020). https://doi.org/10.3103/S0884591320060045

    Article  ADS  Google Scholar 

  2. O. K. Cheremnykh, E. I. Kryuchkov, A. K. Fedorenko, and S. O. Cheremnykh, “Two-frequency propagation mode of acoustic−gravity waves in the Earth’s atmosphere,” Kinematics Phys. Celestial Bodies 36, 64–78 (2020). https://doi.org/10.3103/S0884591320020026

    Article  ADS  Google Scholar 

  3. B. M. Yavorskii and A. A. Detlaf, Handbook of Physics (Nauka, Moscow, 1981; Mir, Moscow, 1985).

  4. G. R. Carignan, B. P. Block, J. C. Maurer, A. E. Hedin, C. A. Reber, and N. W. Spencer, “The neutral mass spectrometer on Dynamics Explorer,” Space Sci. Instrum. 5, 429–441 (1981).

    ADS  Google Scholar 

  5. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov, “Evanescent acoustic–gravity modes in the isothermal atmosphere: Systematization, applications to the Earth’s and solar atmospheres,” Ann. Geophys. 37, 405–415 (2019). https://doi.org/10.5194/angeo-37-405-2019

    Article  ADS  Google Scholar 

  6. O. Cheremnykh, A. Fedorenko, Y. Selivanov, and S. Cheremnykh, “Continuous spectrum of evanescent acoustic–gravity waves in an isothermal atmosphere,” Mon. Not. R. Astron. Soc. 503, 5545–5553 (2021). https://doi.org/10.1093/mnras/stab845

    Article  ADS  Google Scholar 

  7. A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, Yu. O. Klymenko, and Yu. M. Yampolski, “Peculiarities of acoustic–gravity waves in inhomogeneous flows of the polar thermosphere,” J. Atmos. Sol.-Terr. Phys. 178, 17–23 (2018). https://doi.org/10.1016/j.jastp.2018.05.009

    Article  ADS  Google Scholar 

  8. P. Ghosh, H. M. Antia, and S. M. Chitre, “Seismology of the solar f-mode. I. Basic signatures of shearing velocity fields,” Astrophys. J. 451, 851–858 (1995).

    Article  ADS  Google Scholar 

  9. C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960).

    Article  ADS  Google Scholar 

  10. K. M. Huang, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang, “Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere,” Ann. Geophys. 32, 263–275 (2014). https://doi.org/10.5194/angeo-32-263-2014

    Article  ADS  Google Scholar 

  11. H. Lamb, “On atmospheric oscillations,” Proc. R. Soc. London A 84, 551–572 (1911). https://doi.org/10.1098/RSPA.1911.0008

    Article  ADS  MATH  Google Scholar 

  12. A. J. Miles and B. Roberts, “Magnetoacoustic-gravity surface waves. I. Constant Alfvén speed,” Sol. Phys. 141, 205–234 (1992).

    Article  ADS  Google Scholar 

  13. C. S. Rosental and D. O. Gough, “The solar f-mode as interfacial mode at the chromosphere–corona transition,” Astrophys. J. 4, 488–495 (1994).

    Article  ADS  Google Scholar 

  14. L. Stenflo and P. K. Shukla, “Nonlinear acoustic gravity waves,” J. Plasma Phys. 75, 841–847 (2009). https://doi.org/10.1017/S0022377809007892

    Article  ADS  Google Scholar 

  15. I. Tolstoy, “The theory of waves in stratified fluids including the effects of gravity and rotation,” Rev. Mod. Phys. 35, 207–229 (1963). https://doi.org/10.1103/RevModPhys.35.207

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. L. Waltercheid and J. H. Hecht, “A reexamination of evanescent acoustic–gravity waves: Special properties and aeronomical significance,” J. Geophys. Res. 108, 4340 (2003). https://doi.org/10.1029/2002JD002421

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Research Fund of Ukraine under project no. 2020.02/0015 entitled “Theoretical and Experimental Studies of Global Disturbances of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System.” S.O. Cheremnykh and O.O. Kronberg are grateful to the Volkswagen Foundation (VW-Stiftung) for the support of grant no. 97742.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. K. Cheremnykh, A. K. Fedorenko, S. O. Cheremnykh or E. A. Kronberg.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheremnykh, O.K., Fedorenko, A.K., Cheremnykh, S.O. et al. Acoustic Gravity Waves with Height-Independent Amplitude in the Isothermal Atmosphere. Kinemat. Phys. Celest. Bodies 39, 280–286 (2023). https://doi.org/10.3103/S0884591323050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323050021

Keywords:

Navigation