Skip to main content
Log in

Magneto-Ionospheric Effects of the Geospace Storm of March 21–23, 2017

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Geospace storms develop in the Sun–interplanetary medium–magnetosphere–ionosphere–Earth (inner spheres) (SIMMIAE) system. The study of the physical effects of geospace storms is the most important scientific direction in space geophysics. The problem of interaction between the SIMMIAE subsystems during geospace storms is interdisciplinary and requires a systematic approach to solve it. The problem is multifactorial in nature. The response of the subsystems is determined by the simultaneous (synergetic) effect of a number of perturbing factors. It is important that the SIMMIAE system is open, nonlinear, and nonstationary. It has direct and inverse, positive and negative relationships. Given the multifaceted manifestations of geospace storms, because of the unique nature of each storm, the study of the physical effects of geospace storms is an urgent scientific problem. In addition to the problems of a comprehensive study of the physical effects of geospace storms, the problems of their detailed adequate modeling and forecasting are highly important. Their solution will contribute to the survival and sustainable development of our civilization, which is mastering more and more perfect and complex technologies. The greater the people’s technological advances, the more vulnerable the civilization’s infrastructure to the effects of solar and geospace storms. The purpose of this article is to present the results of the analysis of the magneto-ionospheric effects that accompanied the geospace storm of March 21 to 23, 2017. The following tools were used to observe effects in the ionosphere and in the magnetic field caused by the geospace storm of March 21 to 23, 2017: a custom-made digital ionosonde and a Doppler vertical sounding radar located at the V.N. Karazin Kharkiv National University Radiophysical Observatory (49°38′ N, 36°20′ E) and a fluxmeter-magnetometer at the Magnetometer Observatory of the Kharkiv National University (49°38′ N, 36°56′ E). As a rule, the Doppler vertical sounding radar makes measurements at two fixed frequencies, 3.2 and 4.2 MHz. The smaller of them is effective when studying dynamic processes in E- and F1-layers and the larger one, in F1 and F2-layers. The fluxmeter-magnetometer is intended for monitoring the variations of horizontal H- and D-components of the geomagnetic field in the time range 1…1000 s. Ionospheric processes are analyzed using ionograms. The dependences of the virtual height z´ on frequency are first converted to dependences of the electron density N on the true height z. The temporal dependences N(t) are then constructed for fixed altitudes in the 140…260 km range. Then, the periods T and absolute amplitudes ΔNa of quasi-periodic variations N(t), as well as their relative variations δNa = ΔNa/N, are estimated using system spectral analysis. The amplitudes of the reflected signal of the Doppler vertical sounding radar are also used for the analysis. Gating of the reflected signal makes it possible to obtain temporal dependences of beats amplitude of reflected signal and oscillations of the reference oscillator as well as Doppler frequency shifts for certain altitude ranges. This makes it possible to track the dynamics of amplitudes and heights of the reflected radio waves both during the day and during ionospheric storms. Doppler spectra are also analyzed in detail. On the basis of temporal variations of beat amplitudes using the Fourier transform at a time interval of 60 s, temporal dependences of the Doppler spectra in the range –2…+2 Hz are plotted. Then, the temporal dependences of the Doppler frequency shift fd(t) for the main mode are formed. Next, the fd(t) dependences are subjected to a system spectral analysis over a time interval of 120 min. The signal at the fluxmeter-magnetometer output is converted from the signal in relative units to absolute units (nanotesla) taking into account the amplitude-frequency response of the device. The temporal dependences of the level of H- and D-components are created. These dependences are then subjected to system spectral analysis over a time interval of 12 h in the range of periods T = 1…1000 s. The main results of the studies are as follows. A geospace storm, the energy per unit time of which reached 20 GJ/s, was observed on March 21 to 23, 2017. The storm is classified as weak based on its intensity. The geospace storm was accompanied by a weak ionospheric disturbance in the daytime and a strong ionospheric storm at night. The electron density decreased by 1.3 and 4…5 times, respectively. The geospace storm was also accompanied by two moderate magnetic storms with energies of the order of 1015 J and a power of 70 GW. During the magnetic storms, the level of fluctuations of the horizontal components in the range of periods 100…1000 s increased from ±0.5 to ±5 nT. The period of predominant fluctuations increased from 500…900 to 900…1000 s. At the same time, the spectrum of fluctuations changed significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. I. Grigorenko, L. Ya. Emel’yanov, S. A. Pazyura, and L. F. Chernogor, “Ionospheric processes during the 7–10 November 2004 extreme geospace storm. 1. Observation results,” Kosm. Nauka Tekhnol. 13 (4), 62–76 (2007).

    Article  Google Scholar 

  2. E. I. Grigorenko, L. Ya. Emel’yanov, S. A. Pazyura, and L. F. Chernogor, “Ionospheric processes during the 7–10 November 2004 extreme geospace storm. 2. Simulation results and discussion,” Kosm. Nauka Tekhnol. 13 (4), 77–90 (2007).

    Google Scholar 

  3. E. I. Grigorenko, V. N. Lysenko, V. I. Taran, and L. F. Chernogor, “Radio studies of processes in the ionosphere associated with the strongest September 25, 1998 geomagnetic storm,” Usp. Sovrem. Radioelektron., No. 9, 57–94 (2003).

  4. E. I. Grigorenko, V. N. Lysenko, V. I. Taran, and L. F. Chernogor, “Specific features of the ionospheric storm of March 20–23, 2003,” Geomagn. Aeron. (Engl. Transl.) 45, 745–757 (2005).

  5. E. I. Grigorenko, V. N. Lysenko, V. I. Taran, and L. F. Chernogor, “Analysis and classification of ionosphere storms at the midlatitudes of Europe,” Kosm. Nauka Tekhnol. 13 (5), 58–76 (2007).

    Article  ADS  Google Scholar 

  6. E. I. Grigorenko, V. N. Lysenko, V. I. Taran, and L. F. Chernogor, “Analysis and classification of ionosphere storms at the midlatitudes of Europe. 2,” Kosm. Nauka Tekhnol. 13 (5), 77–96 (2007).

    ADS  Google Scholar 

  7. E. I. Grigorenko, V. N. Lysenko, S. A. Pazyura, V. I. Taran, and L. F. Chernogor, “Ionospheric disturbances during the severe magnetic storm of November 7–10, 2004,” Geomagn. Aeron. (Engl. Transl.) 47, 720–738 (2007).

  8. E. I. Grigorenko, S. A. Pazyura, V. I. Taran, L. F. Chernogor, and S. V. Chernyaev, “Dynamic processes in the ionosphere during the severe magnetic storm of May 30–31, 2003,” Geomagn. Aeron. 45, 758–777 (2005).

    Google Scholar 

  9. A. D. Danilov, “F2-region response to geomagnetic disturbances (review),” Geliogeofiz. Issled. 5, 1–33 (2013).

    Google Scholar 

  10. A. D. Danilov and L. D. Morozova, “Ionospheric storms in the F2 region. Morphology and physics (review),” Geomagn. Aeron. 25, 705–721 (1985).

    ADS  Google Scholar 

  11. L. Ya. Emel’yanov, S. V. Katsko, and L. F. Chernogor, “Ionospheric effects of geospace storms on December 21–24, 2016 and March 21–23, 2017,” Visn. Nats. Tekh. Univ. “KhPI”, Radiofiz. Ionos., No. 25(1350), 78–85 (2019).

  12. S. V. Panasenko and L. F. Chernogor, “Event of the November 7–10, 2004, magnetic storm in the lower ionosphere,” Geomagn. Aeron. (Engl. Transl.) 47, 608–620 (2007).

  13. N. G. Ptitsyna, O. A. Danilova, M. I. Tyasto, and V. E. Sdobnov, “Dynamics of cosmic-ray cutoff rigidity and magnetospheric parameters during different phases of the storm of November 20, 2003,” Geomagn. Aeron. (Engl. Transl.) 61, 169–179 (2021).

  14. L. F. Chernogor, “Advanced methods of spectral analysis of quasiperiodic wavelike processes in the ionosphere: Specific features and experimental results,” Geomagn. Aeron. (Engl. Transl.) 48, 652–673 (2008).

  15. L. F. Chernogor and I. F. Domnin, Physics of Geospace Storms: Monograph (Khark. Nats. Univ. im. V. N. Karazina - Inst. Ionos. Nats. Akad. Ukr. Nauk i Minist. Osvity i Nauki, Kharkiv, 2014) [in Russian].

  16. L. F. Chernogor, K. P. Garmash, Q. Guo, and Yu. Zheng, “Effects of the strong ionospheric storm of August 26, 2018: Results of multipath radiophysical monitoring,” Geomagn. Aeron. (Engl. Transl.) 61, 73–91 (2021).

  17. L. F. Chernogor and N. B. Shevelev, “Latitudinal dependence of quasi-periodic variations in the geomagnetic field during the greatest geospace storm of September 7–9, 2017,” Kosm. Nauka Tekhnol. 26 (2), 72–83 (2020).

  18. L. F. Chernogor, K. P. Garmash, V. A. Podnos, and O. F. Tyrnov, “The V. N. Karazin Kharkiv National University Radio Physical Observatory — The tool for ionosphere monitoring in space experiments,” in Space Project IONOSAT-MICRO (Akademperiodika, Kyiv, 2013), pp. 160–182 [in Russian].

  19. L. F. Chornogor, “Physics of geospace storms,” Kosm. Nauka Tekhnol. 27 (1), 3–77 (2021). https://doi.org/10.15407/knit2021.01.003

    Article  Google Scholar 

  20. L. F. Chernogor, “Statistical characteristics of geomagnetic storms in the 24th cycle of solar activity,” Kinematics Phys. Celestial Bodies 37, 193–199 (2021). https://doi.org/10.3103/S0884591321040048

    Article  ADS  Google Scholar 

  21. L. F. Chornogor, M. Yu. Golub, and Y. Luo, “Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009–2020,” Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser.: Radiofiz. Elektron. 33, 69–77 (2020). https://doi.org/10.26565/2311-0872-2020-33-06

    Article  Google Scholar 

  22. Yu. V. Yasyukevich, N. P. Perevalova, I. K. Edemskii, and A. S. Polyakova, The Response of the Ionosphere to Solar and Geophysical Disturbing Factors According to GPS: Monograph (Irkutsk. Gos. Univ., Irkutsk, 2013) [in Russian].

    Google Scholar 

  23. D. V. Blagoveshchensky, “Effects of geomagnetic storms in the low-latitude ionosphere,” Cosmic Res. 58, 234–241 (2020). https://doi.org/10.1134/s0010952520040024

    Article  ADS  Google Scholar 

  24. D. V. Blagoveshchensky and M. A. Sergeeva, “Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: A multi-instrument study,” Adv. Space Res. 63, 239–256 (2019). https://doi.org/10.1016/j.asr.2018.07.016

    Article  ADS  Google Scholar 

  25. D. V. Blagoveshchensky, G. A. Zhbankov, and O. A. Maltseva, “Observed and calculated ionograms of oblique ionospheric sounding on HF radio paths during a magnetic storm of September 7–8, 2017,” Radiophys. Quantum Electron. 61, 881–892 (2019). https://doi.org/10.1007/s11141-019-09944-3

    Article  ADS  Google Scholar 

  26. O. S. Bolaji, J. B. Fashae, S. J. Adebiyi, C. Owolabi, B. O. Adebesin, R. O. Kaka, Jewel Ibanga, M. Abass, O. O. Akinola, B. J. Adekoya, and W. Younas, “Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25–26, 2018 geomagnetic storm,” J. Geophys. Res.: Space Phys. 126, e2020JA029068 (2021). https://doi.org/10.1029/2020JA029068

  27. V. Bothmer and I. Daglis, Space Weather: Physics and Effects (Springer-Verlag New York, 2007).

    Book  Google Scholar 

  28. M. J. Buonsanto, “Ionospheric storms — A review,” Space Sci. Rev. 88, 563–601 (1999). https://doi.org/10.1023/A:1005107532631

    Article  ADS  Google Scholar 

  29. L. F. Chernogor, Ye. I. Grigorenko, V. N. Lysenko, and V. I. Taran, “Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations,” Int. J. Geomagn. Aeron. 7, GI3001 (2007). https://doi.org/10.1029/2005GI000125

    Article  Google Scholar 

  30. L. F. Chernogor, K. P. Garmash, Q. Guo, Y. Luo, V. T. Rozumenko, and Y. Zheng, “Ionospheric storm effects over the People’s Republic of China on 14 May 2019: Results from multipath multi-frequency oblique radio sounding,” Adv. Space Res. 66, 226–242 (2020). https://doi.org/10.1016/j.asr.2020.03.037

    Article  ADS  Google Scholar 

  31. L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, and Y. Zheng, “Radio wave characteristics distorted during geospace storm: Results of multi-frequency multiple path oblique sounding of ionosphere,” in Proc. 2021 IEEE 3rd Ukraine Conf. on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, Aug. 26–28, 2021 (IEEE, Piscataway, N.J., 2021), pp. 151–156. https://doi.org/10.1109/UKRCON53503.2021.9576010

  32. L. F. Chernogor, Y. Zheng, Q. Guo, Y. Luo, K. P. Garmash, and V. T. Rozumenko, “Features of ionospheric and magnetic effects of August 5–6, 2019 noticeable geospace storm over China and Ukraine,” in Problems of Geocosmos — 2020 (Springer-Verlag, Cham, 2022), Ch. 28, pp. 379–396.

  33. G. D’Angelo, M. Piersanti, L. Alfonsi, L. Spogli, L. B. N. Clausen, I. Coco, G. Li, and N. Baiqi, “The response of high latitude ionosphere to the 2015 St. Patrick’s day storm from in situ and ground based observations,” Adv. Space Res. 62, 638–650 (2018). https://doi.org/10.1016/j.asr.2018.05.005

    Article  ADS  Google Scholar 

  34. A. D. Danilov and J. Lastovička, “Effects of geomagnetic storms on the ionosphere and atmosphere,” Int. J. Geomagn. Aeron. 2, 209–224 (2001).

    Google Scholar 

  35. I. V. Despirak, N. G. Kleimenova, L. I. Gromova, S. V. Gromov, and L. M. Malysheva, “Supersubstorms during storms of September 7–8, 2017,” Geomagn. Aeron. (Engl. Transl.) 60, 292–300 (2020). https://doi.org/10.1134/S0016793220030044

  36. A. V. Dmitriev, A. V. Suvorova, M. V. Klimenko, V. V. Klimenko, K. G. Ratovsky, R. A. Rakhmatulin, and V. A. Parkhomov, “Predictable and unpredictable ionospheric disturbances during St. Patrick’s Day magnetic storms of 2013 and 2015 and on 8–9 March 2008,” J. Geophys. Res.: Space Phys. 122, 2398–2423 (2017). https://doi.org/10.1002/2016JA023260

    Article  ADS  Google Scholar 

  37. B. G. Fejer, L. A. Navarro, S. Sazykin, A. Newheart, M. A. Milla, and P. Condor, “Prompt penetration and substorm effects over Jicamarca during the September 2017 geomagnetic storm,” J. Geophys. Res.: Space Phys. 126, e2021JA029651 (2021). https://doi.org/10.1029/2021JA029651

  38. J. Feng, Y. Zhou, Y. Zhou, S. Gao, C. Zhou, Q. Tang, and Y. Liu, “Ionospheric response to the 17 March and 22 June 2015 geomagnetic storms over Wuhan region using GNSS-based tomographic technique,” Adv. Space Res. 67, 111–121 (2021). https://doi.org/10.1016/j.asr.2020.10.008

    Article  ADS  Google Scholar 

  39. T. J. Fuller-Rowell, M. V. Codrescu, R. G. Roble, and A. D. Richmond, “How does the thermosphere and ionosphere react to a geomagnetic storm?,” in Magnetic Storms, Ed. by B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, and J. K. Arballo (American Geophysical Union, Washington, DC, 1998), in Ser.: Geophysical Monograph Series, Vol. 98, pp. 203–226. https://doi.org/10.1029/GM098

  40. R. N. Ghodpage, P. T. Patil, O. B. Gurav, S. Gurubaran, A. K. Sharma, “Ionospheric response to major storm of 17th March 2015 using multi-instrument data over low latitude station Kolhapur (16.8°N, 74.2°E, 10.6°dip. Lat.),” Adv. Space Res. 62, 624–637 (2018). https://doi.org/10.1016/j.asr.2018.05.003

    Article  ADS  Google Scholar 

  41. W. D. Gonzalez, J. A. Jozelyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas, “What is a geomagnetic storm?,” J. Geophys. Res.: Space Phys. 99, 5771–5792 (1994). https://doi.org/10.1029/93JA02867

    Article  ADS  Google Scholar 

  42. N. Imtiaz, W. Younas, and M. Khan, “Response of the low-to mid-latitude ionosphere to the geomagnetic storm of September 2017,” Ann. Geophys. 38, 359–372 (2020). https://doi.org/10.5194/angeo-38-359-2020

    Article  ADS  Google Scholar 

  43. C. Jiang, G. Yang, J. Liu, T. Yokoyama, T. Liu, T. Lan, C. Zhou, Y. Zhang, Z. Zhao, T. Komolmis, P. Supnithi, and C. Y. Yatini, “Equatorial and low-latitude ionospheric response to the 17-18 March 2015 great storm over South East Asia longitude sector,” J. Geophys. Res.: Space Phys. 122, 5756–5767 (2017). https://doi.org/10.1002/2017JA024134

    Article  ADS  Google Scholar 

  44. O. Jimoh, J. Lei, J. Zhong, C. Owolabi, X. Luan, and X. Dou, “Topside ionospheric conditions during the 7–8 September 2017 geomagnetic storm,” J. Geophys. Res.: Space Phys. 124, 9381–9404 (2019). https://doi.org/10.1029/2019JA026590

    Article  ADS  Google Scholar 

  45. S. Jin, R. Jin, and H. Kutoglu, “Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations,” J. Geodes. 91, 613–626 (2017). https://doi.org/10.1007/s00190-016-0988-4

    Article  ADS  Google Scholar 

  46. O. F. Jonah, A. Coster, S. Zhang, L. Goncharenko, P. J. Erickson, E. R. de Paula, and E. A. Kherani, “TID observations and source analysis during the 2017 Memorial Day weekend geomagnetic storm over North America,” J. Geophys. Res.: Space Phys. 123, 8749–8765 (2018). https://doi.org/10.1029/2018JA025367

    Article  ADS  Google Scholar 

  47. S. V. Katsko, L. Y. Emelyanov, and L. F. Chernogor, “Ionosphere response to space weather events on 21–23 March 2017 in the central region of Europe,” in Proc. 2021 34th General Assembly and Scientific Symp. of the International Union of Radio Science (URSI GASS), Rome, Italy, Aug. 28 – Sept. 4, 2021 (IEEE, Piscataway, N.J., 2021), pp. 1–4. https://doi.org/10.23919/URSIGASS51995.2021.9560587

  48. S. Kumar and V. V. Kumar, “Ionospheric response to the St. Patrick’s Day space weather events in March 2012, 2013, and 2015 at Southern low and middle latitudes,” J. Geophys. Res.: Space Phys. 124, 584–602 (2019). https://doi.org/10.1029/2018JA025674

    Article  ADS  Google Scholar 

  49. V. V. Kumar and M. L. Parkinson, “A global scale picture of ionospheric peak electron density changes during geomagnetic storms,” Space Weather 15, 637–652 (2017). https://doi.org/10.1002/2016SW001573

    Article  ADS  Google Scholar 

  50. J. Laštovička, “Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere,” J. Atmos. Terr. Phys. 58, 831–843 (1996). https://doi.org/10.1016/0021-9169(95)00106-9

    Article  ADS  Google Scholar 

  51. J. Lei, F. Huang, X. Chen, J. Zhong, D. Ren, W. Wang, X. Yue, X. Luan, M. Jia, X. Dou, L. Hu, B. Ning, C. Owolabi, J. Chen, G. Li, and X. Xue, “Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017?,” J. Geophys. Res.: Space Phys. 123, 3217–3232 (2018). https://doi.org/10.1029/2017JA025166

    Article  ADS  Google Scholar 

  52. S. Li, “Temporal evolution analysis of storm-enhanced density during an intense magnetic storm on March 2015,” Adv. Space Res. 67, 1570–1579 (2021). https://doi.org/10.1016/j.asr.2020.12.004

    Article  ADS  Google Scholar 

  53. D. Lissa, V. K. D. Srinivasu, D. S. V. V. D. Prasad, and K. Niranjan, “Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80°E and 120°E longitudes in the Asian sector,” Adv. Space Res. 66, 1427–1440 (2020). https://doi.org/10.1016/j.asr.2020.05.025

    Article  ADS  Google Scholar 

  54. G. Liu and H. Shen, “A severe negative response of the ionosphere to the intense geomagnetic storm on March 17, 2015 observed at mid- and low-latitude stations in the China zone,” Adv. Space Res. 59, 2301–2312 (2017). https://doi.org/10.1016/j.asr.2017.02.021

    Article  ADS  Google Scholar 

  55. J. Liu, D.-H. Zhang, A. J. Coster, S.-R. Zhang, G.-Y. Ma, Y.-Q. Hao, and Z. Xiao, “A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick’s Day geomagnetic storm,” Ann. Geophys. 37, 673–687 (2019). https://doi.org/10.5194/angeo-37-673-2019

    Article  ADS  Google Scholar 

  56. Y. Luo, L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, and Yu. Zheng, “Dynamic processes in the magnetic field and in the ionosphere during the 30 August 2 September, 2019 geospace storm,” Ann. Geophys. 39, 657–685 (2021). https://doi.org/10.5194/angeo-39-657-2021

    Article  ADS  Google Scholar 

  57. Y. Luo, Q. Guo, Y. Zheng, K. P. Garmash, L. F. Chernogor, and S. M. Shul’ga, “Geospace storm effects on August 5–6, 2019,” Kosm. Nauka Tekhnol. 27 (2), 45–69 (2021). https://doi.org/10.15407/knit2021.02.045

  58. Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U., Skoug, and R., “Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms”,” Geophys. Res. Lett. 32, L12S02 (2005). https://doi.org/10.1029/2004GL021467

  59. G. A. Mansilla and M. M. Zossi, “Longitudinal variation of the ionospheric response to the 26 August 2018 geomagnetic storm at equatorial/low latitudes,” Pure Appl. Geophys. 177, 5833–5844 (2020). https://doi.org/10.1007/s00024-020-02601-1

    Article  ADS  Google Scholar 

  60. S. Matsushita, “A study of the morphology of ionospheric storms,” J. Geophys. Res. 64, 305–321 (1959). https://doi.org/10.1029/JZ064i003p00305

    Article  ADS  Google Scholar 

  61. C. M. Ngwira, J.-B. Habarulema, E. Astafyeva, E. Yizengaw, O. F. Jonah, G. Crowley, A. Gisler, and V. Coffey, “Dynamic response of ionospheric plasma density to the geomagnetic storm of 22–23 June 2015,” J. Geophys. Res.: Space Phys. 124, 7123–7139 (2019). https://doi.org/10.1029/2018JA026172

    Article  ADS  Google Scholar 

  62. G. Nykiel, Y. M. Zanimonskiy, Yu. M. Yampolski, and M. Figurski, “Efficient usage of dense GNSS networks in Central Europe for the visualization and investigation of ionospheric TEC variations,” Sensors 17, 2298 (2017). https://doi.org/10.3390/s17102298

    Article  ADS  Google Scholar 

  63. O. J. Olwendo, C. Cesaroni, Y. Yamazaki, and P. Cilliers, “Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick’s day storm,” Adv. Space Res. 60, 1817–1826 (2017). https://doi.org/10.1016/j.asr.2017.06.037

    Article  ADS  Google Scholar 

  64. B. Paul, B. K. De, and A. Guha, “Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015,” Acta Geod. Geophys. 53, 579–606 (2018). https://doi.org/10.1007/s40328-018-0221-4

    Article  Google Scholar 

  65. M. Piersanti, C. Cesaroni, L. Spogli, and T. Alberti, “Does TEC react to a sudden impulse as a whole? The 2015 Saint Patrick’s day storm event,” Adv. Space Res. 60, 1807–1816 (2017). https://doi.org/10.1016/j.asr.2017.01.021

    Article  ADS  Google Scholar 

  66. N. Polekh, N. Zolotukhina, V. Kurkin, G. Zherebtsov, J. Shi, G. Wang, and Z. Wang, “Dynamics of ionospheric disturbances during the 17–19 March 2015 geomagnetic storm over East Asia,” Adv. Space Res. 60, 2464–2476 (2017). https://doi.org/10.1016/j.asr.2017.09.030

    Article  ADS  Google Scholar 

  67. G. W. Prölss, “Ionospheric F-region storms,” in Handbook of Atmospheric Electrodynamics, Ed. by H. Volland (CRC, Roca Raton, Fla., 1995), Vol. 2, pp. 195–248.

    Google Scholar 

  68. G. W. Prölss, “Magnetic storm associated perturbations of the upper atmosphere,” in Magnetic Storms, Ed. by B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, and J. K. Arballo (American Geophysical Union, Washington, DC, 1998), in Ser.: Geophysical Monograph Series, Vol. 98, pp. 249–290.

  69. G. W. Prölss and M. J. Jung, “Travelling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes,” J. Atmos. Terr. Phys. 40, 1351–1354 (1978). https://doi.org/10.1016/0021-9169(78)90088-0

    Article  ADS  Google Scholar 

  70. S. Ray, B. Roy, K. S. Paul, S. Goswami, C. Oikonomou, H. Haralambous, B. Chandel, and A. Paul, “Study of the effect of 17–18 March 2015 geomagnetic storm on the Indian longitudes using GPS and C/NOFS,” J. Geophys. Res.: Space Phys. 122, 2551–2563 (2017). https://doi.org/10.1002/2016JA023127

    Article  ADS  Google Scholar 

  71. A. V. Rubtsov, B. M. Maletckii, E. I. Danilchuk, E. E. Smotrova, A. D. Shelkov, and A. S. Yasyukevich, “Ionospheric disturbances over Eastern Siberia during April 12–15, 2016 geomagnetic storms,” Sol.-Terr. Phys. 6 (1), 60–68 (2020). https://doi.org/10.12737/STP-61202007

  72. E. Şentürk, “Investigation of global ionospheric response of the severe geomagnetic storm on June 22–23, 2015 by GNSS-based TEC observations,” Astrophys. Space Sci. 365, 110 (2020). https://doi.org/10.1007/s10509-020-03828-z

    Article  ADS  MathSciNet  Google Scholar 

  73. B. G. Shpynev, N. A. Zolotukhina, N. M. Polekh, K. G. Ratovsky, M. A. Chernigovskaya, A. Y. Belinskaya, A. E. Stepanov, V. V. Bychkov, S. A. Grigorieva, V. A. Panchenko, N. A. Korenkova, and J. Mielich, “The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian highmiddle latitudes ionosonde chain,” J. Atmos. Sol.-Terr. Phys. 180, 93–105 (2018). https://doi.org/10.1016/j.jastp.2017.10.014

    Article  ADS  Google Scholar 

  74. P. R. Shreedevi, R. K. Choudhary, Thampi, V. Smitha, Yadav Sneha, T. K. Pant, Yu Yiqun, McGranaghan Ryan, G. Thomas Evan, Bhardwaj Anil, and A. K. Sinha, “Geomagnetic storm-induced plasma density enhancements in the Southern polar ionospheric region: A comparative study using St. Patrick’s day storms of 2013 and 2015,” Space Weather 18, e2019SW002383 (2020). https://doi.org/10.1029/2019SW002383

  75. L. Spogli, D. Sabbagh, M. Regi, C. Cesaroni, L. Perrone, L. Alfonsi, D. di Mauro, S. Lepidi, S. A. Campuzano, D. Marchetti, A. De. Santis, A. Malagnini, C. Scotto, G. Cianchini, X. Shen, A. Piscini, and A. Ippolito, “Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground-based observations,” J. Geophys. Res.: Space Phys. 126, e2020JA028368 (2021). https://doi.org/10.1029/2020JA028368

  76. W.-J. Sun, B.-Q. Ning, B.-Q. Zhao, G.-Z. Li, L.-H. Hu, and S.-M. Chang, “Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015,” Acta Geophys. Sin. 60 (1), 1–10 (2017).

    Google Scholar 

  77. V. P. Uryadov, F. I. Vybornov, and A. V. Pershin, “Features of the HF signal propagation on oblique sounding paths during solar and magnetic activity in September 2017,” Radiophys. Quantum Electron. 62, 85–98 (2019). https://doi.org/10.1007/s11141-019-09956-z

    Article  ADS  Google Scholar 

  78. K. Venkatesh, S. Tulasi Ram, P. R. Fagundes, G. K. Seemala, and I. S. Batista, “Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015,” J. Geophys. Res.: Space Phys. 122, 4553–4570 (2017). https://doi.org/10.1002/2017JA024009

    Article  ADS  Google Scholar 

  79. O. P. Verkhoglyadova, A. Komjathy, A. J. Mannucci, M. G. Mlynczak, L. A. Hunt, and L. J. Paxton, “Revisiting ionosphere-thermosphere responses to solar wind driving in superstorms of November 2003 and 2004,” J. Geophys. Res.: Space Phys. 122, 10824–10850 (2017). https://doi.org/10.1002/2017JA024542

    Article  ADS  Google Scholar 

  80. D. Vijaya Lekshmi, N. Balan, S. Tulasi Ram, and J. Y. Liu, “Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles,” J. Geophys. Res.: Space Phys. 116, A11328 (2011). https://doi.org/10.1029/2011JA017042

    Article  ADS  Google Scholar 

  81. Z. Wang, S. Zou, L. Liu, J. Ren, and E. Aa, “Hemispheric asymmetries in the mid-latitude ionosphere during the September 7–8, 2017 storm: Multi-instrument observations,” J. Geophys. Res. 126, e2020JA028829 (2021). https://doi.org/10.1029/2020JA028829

  82. D. Wen and D. Mei, “Ionospheric TEC disturbances over China during the strong geomagnetic storm in September 2017,” Adv. Space Res. 65, 2529–2539 (2020). https://doi.org/10.1016/j.asr.2020.03.002

    Article  Google Scholar 

  83. D. M. Willis, P. R. Stevens, and S. R. Crothers, “Statistics of the largest geomagnetic storms per solar cycle (1844–1993),” Ann. Geophys. 15, 719–728 (1997). https://doi.org/10.1007/s00585-997-0719-5

    Article  ADS  Google Scholar 

  84. Z. Xu, M. Hartinger, C. Clauer, T. Peek, and R. Behlke, “A comparison of the ground magnetic responses during the 2013 and 2015 St Patrick’s Day geomagnetic storms,” J. Geophys. Res.: Space Phys. 122, 4023–4036 (2017). https://doi.org/10.1002/2016JA023338

    Article  ADS  Google Scholar 

  85. W. Younas, C. Amory-Mazaudier, M. Khan, and R. Fleury, “Ionospheric and magnetic signatures of a space weather event on 25–29 August 2018: CME and HSSWs,” J. Geophys. Res.: Space Phys. 125, e2020JA027981 (2020). https://doi.org/10.1029/2020JA027981

  86. I. Zakharenkova, I. Cherniak, and A. Krankowski, “Features of storm-induced ionospheric irregularities from ground-based and spaceborne GPS observations during the 2015 St. Patrick’s Day storm,” J. Geophys. Res.: Space Phys. 124, 10728–10748 (2019). https://doi.org/10.1029/2019JA026782

    Article  Google Scholar 

  87. S.-R. Zhang, P. J. Erickson, Y. Zhang, W. Wang, C. Huang, A. J. Coster, J. M. Holt, J. F. Foster, M. Sulzer, and R. Kerr, “Observations of ion-neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick’s Day storm,” J. Geophys. Res.: Space Phys. 122, 1314–1337 (2017). https://doi.org/10.1002/2016JA023307

    Article  ADS  Google Scholar 

  88. N. Zolotukhina, N. Polekh, V. Kurkin, D. Rogov, E. Romanova, and M. Chelpanov, “Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 March 2015,” J. Geophys. Res.: Space Phys. 122, 2484–2504 (2017). https://doi.org/10.1002/2016JA023180

    Article  ADS  Google Scholar 

Download references

Funding

The work of L.F. Chernogor and Y. Luo was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 (Theoretical and Experimental Studies of Global Disturbances of Natural and Technogenic Origin in the Earth–Atmosphere–Ionosphere System). The work of L.F. Chernogor was supported by the Ministry of Education and Science of Ukraine (project nos. 0121U109881, 0121U109882, and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Chernogor, L.F. & Garmash, K.P. Magneto-Ionospheric Effects of the Geospace Storm of March 21–23, 2017. Kinemat. Phys. Celest. Bodies 38, 210–229 (2022). https://doi.org/10.3103/S0884591322040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322040055

Keywords:

Navigation