Skip to main content
Log in

Diffuse Structure of Some Meteors at the Beginning of Their Trajectories at Classical Heights

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The problem of anomalous meteors with diffuse view and increased size of their comas at the beginning of radiation is considered. Results from processing some meteors detected with high-sensitive observational TV systems of the Super-Isocon type during Leonid storm observations in 2002 are given. As opposed to similar cases described in literature previously, the given meteors had an increased in size diffuse structure of the meteor coma not at extra-high altitudes but below 128 km: 118.06 ± 0.07 km, 123.01 ± 0.02 km, and 124.45 ± 0.10 km. At the trajectory beginning, their absolute stellar magnitudes varied in the range of +6m to +5m, and they reached –0.5m in maximum of brightness. The range of their masses was 0.03–0.06 g. The influence of the TV system’s working mode on the possible appearance of artifacts is considered. While the transparent, diffuse view of a limiting low-light meteor image can be a result of a low signal-to-noise ratio, the increase in spatial size of a meteor coma cannot be explained by technical artifacts. Separation of some extremely low-light meteor images in start frames onto a range of individual point-like objects placed inside a zone of 0.5–1.5 km can serve as an indirect argument for real fragmentation of an initial particle. A conclusion is drawn about the possible fragmentation of some meteoroids from the Leonid stream during a time period of 2–3 weeks before collision with the Earth with velocities of fragment separation on the order of millimeters a second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. M. Kozak and L. V. Kozak, “Method for photometry of low light level meteors and earth artificial satellites from observations of superisocon TV systems,” Kosm. Nauka Tekhnol. 21 (1), 38–47 (2015).

    Article  Google Scholar 

  2. P. M. Kozak, O. O. Rozhilo, and Ju. G. Taranukha, “Kinematical parameters of the meteors from the results of the basic television observations during the period of the autumn equinox of 2001,” Visn. Kyiv. Nats. Univ. Im. T. Shevchenka. Astron. 49, 20–25 (2012).

    Google Scholar 

  3. P. M. Kozak, O. O. Rozhilo, Ju. G. Taranukha, and V. G. Kruchynenko, “Kinematical characteristics of September meteors from double-station TV observations in 2003,” Kosm. Nauka Tekhnol. 17 (4), 53–64 (2011).

    Article  Google Scholar 

  4. B. Yu. Levin, Physical Theory of Meteors and Meteor Matter in the Solar System (Akad. Nauk SSSR, Moscow, 1956) [in Russian].

    Google Scholar 

  5. S. Abe, J. Borovicka, P. Spurny, P. Koten, Z. Ceplecha, T. Tamagawa, and Meteor Network Team in Japan, “Earth-grazing fireball on March 29, 2006,” in Proc. Eur. Planetary Science Congr.2006, Berlin, 2006, p. 486.

  6. H. Betlem, P. Jenniskens, J. Leven, C. Kuile, C. Johannink, H. Zhao, C. Lei, G. Li, J. Zhu, S. Evans, and P. Spurny, “Very precise orbits of 1998 Leonid meteors,” Meteorit. Planet. Sci. 34, 979–986 (1999).

    Article  ADS  Google Scholar 

  7. J. Borovicka and Z. Ceplecha, “Earth-grazing fireball of October 13, 1990,” Astron. Astrophys. 257, 323–328 (1992).

    ADS  Google Scholar 

  8. V. A. Bronshten, The Physics of Meteoritic Phenomena (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  9. M. D. Campbell, P. G. Brown, A. G. LeBlanc, R. Hawkes, J. Jones, S. Worden, and R. Correll, “Image-intensified video result from the 1998 Leonid shower: I. Atmospheric trajectories and physical structure,” Meteorit. Planet. Sci. 35, 1259–1267 (2000).

    Article  ADS  Google Scholar 

  10. M. D. Campbell-Brown and D. Koschny, “Model of the ablation of faint meteors,” Astron. Astrophys. 418, 751–758 (2004).

    Article  ADS  Google Scholar 

  11. Z. Ceplecha, “Earth-grazing daylight fireball of August 10, 1972,” Astron. Astrophys. 283, 287–288 (1994).

    ADS  Google Scholar 

  12. Y. Fujiwara, M. Ueda, Y. Shiba, M. Sugimoto, M. Kinoshita, C. Shimods, and T. Nakamura, “Meteor luminosity at 160 km altitude from TV observations for bright Leonid meteors,” Geophys. Res. Lett. 25, 285–288 (1998).

    Article  ADS  Google Scholar 

  13. B. Gahrken and J. Michelberger, “A bright, high altitude 2002 Leonid,” WGN, J. IMO, 31 (5), 137–138 (2003).

    ADS  Google Scholar 

  14. M. Hajdukova, V. G. Kruchinenko, A. M. Kazantsev, Ju. G. Taranucha, A. A. Rozhilo, S. S. Eryomin, and P. N. Kozak, “Perseid meteor stream 1991–1993 from TV observations in Kiev,” Earth, Moon, Planets 68, 297–301 (1995).

    Article  ADS  Google Scholar 

  15. M. Kinoshita, T. Maruyama, and T. Sagayama, “Preliminary activity of Leonid meteor storm observed with a video camera in 1997,” Geophys. Res. Lett. 26, 41–44 (1999).

    Article  ADS  Google Scholar 

  16. P. Koten, P. Spurny, J. Borovicka, and R. Stork, “Extreme beginning heights for non-Leonid meteors,” in Proc. Meteoroids 2001 Conf., Kiruna, Sweden, August 6–10,2001, Ed. by B. Warmbein (ESA, Noordwijk, 2001), pp. 119–122.

  17. P. M. Kozak, “Analysis of the methods and precision of determination of the equatorial coordinates in digital reducing of TV observations of meteors,” Kinematics Phys. Celestial Bodies 18, 471–480 (2002).

    Google Scholar 

  18. P. M. Kozak, “A vector method for the determination of trajectory parameters and heliocentric orbit elements of a meteor in TV observations,” Kinematics Phys. Celestial Bodies 19, 62–76 (2003).

    Google Scholar 

  19. P. Kozak, “"Falling Star”: Software for processing of double-station TV meteor observations,” Earth, Moon, Planets 102, 277–283 (2008).

    Article  ADS  Google Scholar 

  20. P. M. Kozak, “Semi-empirical method for the photometry of low-light meteors from observations with the isocon television systems,” in Proc. Meteoroids 2013, Poznań, Poland, Aug. 26–30,2013, Ed. by T. J. Jopek, F. J. M. Rietmeijer, J. Watanabe, and I. P. Williams (A. M. Univ. Press, 2014), pp. 335–343.

  21. P. Kozak, O. Rozhilo, V. Kruchynenko, A. Kazantsev, and A. Taranukha, “Results of processing of Leonids-2002 meteor storm TV observations in Kyiv,” Adv. Space Res. 39, 619–623 (2007).

    Article  ADS  Google Scholar 

  22. P. M. Kozak, A. A. Rozhilo, and Y. G. Taranukha, “Some features of digital kinematic and photometrical processing of faint TV vectors,” in Proc. Meteoroids 2001 Conf., Kiruna, Sweden, August 6–10,2001, Ed. by B. Warmbein (ESA, Noordwijk, 2001), pp. 337–342.

  23. P. M. Kozak and J. Watanabe, “Upward-Moving Low-Light Meteor — I. Observation results,” Mon. Not. R. Astron. Soc. 467, 793–801 (2017).

    ADS  Google Scholar 

  24. P. Kozak, J. Watanabe, and M. Sato, “Anomalous Meteors from the Observations with Super-Isocon TV Systems,” in Proc. ACM’ 2014 Conf., Helsinki, June 30 – July 4,2014, Ed. by K. Muinonen, A. Penttila, M. Granvik, A. Virkki, G. Fedorets, O. Wilkman, and T. Kohout (Univ. of Helsinki, Helsinki, 2014), p. 310.

  25. V. G. Kruchinenko, A. M. Kazantsev, Yu. G. Taranukha, P. M. Kozak, S. S. Yeryomin, O. O. Rozhylo, and L. M. Smertyuk, “Catalogue of Perseid shower meteors on TV observations in Kyiv during 1991–1993,” Visn. Kyiv. Univ. Astron. 34, 94–117 (1997).

    Google Scholar 

  26. A. G. LeBlanc, I. S. Murray, R. L. Hawkes, P. Worden, M. D. Campbell, P. Brown, P. Jenniskens, R. R. Correll, T. Montague, and D. D. Babcock, “Evidence for transverse spread in Leonid meteors,” Mon. Not. R. Astron. Soc. 313 (2000).

    Article  ADS  Google Scholar 

  27. J. M. Madiedo, F. Espartero, A. J. Castro-Tirado, S. Pastor, J. A. Reyes, and A. Jose, “Earth-grazing fireball from the ζ-Perseid shower observed over Spain on 2012 June 10,” Mon. Not. R. Astron. Soc. 460, 917–922 (2016).

    Article  ADS  Google Scholar 

  28. I. S. Murray, R. L. Hawkes, and P. Jenniskens, “Airborne intensified charge-coupled device observations of the 1998 Leonid shower,” Meteorit. Planet. Sci. 34, 949–958 (1999).

    Article  ADS  Google Scholar 

  29. A. Olech, P. Zoladek, M. Wisniewski, K. Fietkiewicz, M. Maciejewski, Z. Tyminski, T. Krzyzanowski, M. Krasnowski, M. Kwinta, M. Myszkiewicz, K. Polakowski, and P. Zareba, “F191012 Myszyniec — Highest Orionid meteor ever recorded,” Astron. Astrophys. 557, A89 (2013).

    Article  ADS  Google Scholar 

  30. O. P. Popova, A. S. Strelkov, and S. N. Sidneva, “Sputtering of fast meteoroids' surface,” Adv. Space Res. 39, 567–573 (2007).

    Article  ADS  Google Scholar 

  31. I. D. Roberts, R. L. Hawkes, R. J. Weryk, M. D. Campbell-Brown, P. G. Brown, E. Stokan, and D. Subasinghe, “Meteoroid structure and ablation implications from multiple maxima meteor light curves,” in Proc. Meteoroids 2013, Poznań, Poland, Aug. 26–30,2013, Ed. by T. J. Jopek, F. J. M. Rietmeijer, J. Watanabe, and I. P. Williams (A. M. Univ. Press, 2014), pp. 155–162.

  32. P. Spumy, H. Betlem, K. Jobse, P. Koten, and J. V. Leven, “New type of radiation of bright Leonid meteors above 130 km,” Meteorit. Planet. Sci. 35, 1109–1115 (2000).

    Article  ADS  Google Scholar 

  33. P. Spurny, H. Betlem, J. V. Leven, and P. Jenniskens, “Atmospheric behavior and extreme beginning heights of the thirteen brightest photographic Leonid meteors from the ground based expedition to China,” Meteorit. Planet. Sci. 35, 243–249 (2000).

    Article  ADS  Google Scholar 

  34. P. Spurny, L. Shrbeny, J. Borovicka, P. Koten, V. Vojacek, and R. Stork, “Bright Perseid fireball with exceptional beginning height of 170 km,” Astron. Astrophys. 463, A64 (2014).

    Article  Google Scholar 

  35. M. J. Taylor, R. C. Gardner, I. S. Murray, and P. Jenniskens, “Jet-like structures and wake in Mg I (518 nm) images of 1999 Leonid storm showers,” Earth, Moon, Planets 82–83, 379–389 (2000).

    ADS  Google Scholar 

  36. D. Vinkovic, “Thermalization of sputtered particles as the source of diffuse radiation from high altitude meteors,” Adv. Space Res. 39, 574–582 (2007).

    Article  ADS  Google Scholar 

  37. J. Watanabe, I. Tabe, H. Hasegawa, T. Hashimoto, T. Fuse, M. Yoshikawa, S. Abe, and B. Suzuki, “Meteoroid clusters in Leonids: Evidence of fragmentation in space,” Publ. Astron. Soc. Jpn. 55, L23–L26 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Kozak.

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, P.M. Diffuse Structure of Some Meteors at the Beginning of Their Trajectories at Classical Heights. Kinemat. Phys. Celest. Bodies 35, 286–294 (2019). https://doi.org/10.3103/S0884591319060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319060047

Keywords:

Navigation