Skip to main content
Log in

Turbulence and Rotation in Solar-Type Stars

  • PHYSICS OF STARS AND INTERSTELLAR MEDIUM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Microturbulence, macroturbulence, thermal motion, and rotation contribute to the broadening of line profiles in stellar spectra. Reliable data on the velocity distribution of turbulent motions in stellar atmospheres are needed to interpret the spectra of solar-type stars unambiguously in exoplanetary research. Stellar spectra with a high resolution of 115 000 obtained with the HARPS spectrograph provide an opportunity to examine turbulence velocities and their depth distributions in the photosphere of stars. Fourier analysis was performed for 17 iron lines in the spectra of 13 stars with an effective temperature of 4900–6200 K and a logarithm of surface gravity of 3.9–5.0 as well as in the spectrum of the Sun as a star. Models of stellar atmospheres were taken from the MARCS database. The standard concept of isotropic Gaussian microturbulence was assumed in this study. A satisfactory fit between the synthesized profiles of spectral lines and observational data verified the reliability of the Fourier method. The most likely estimates of turbulence velocities, the rotation velocity, and the iron abundance and their photospheric depth distribution profiles were obtained as a result. Microturbulence does not vary to any significant degree with depth, while macroturbulence has a marked depth dependence. The macroturbulence velocity increases with depth in the stellar atmosphere. The higher the effective temperature of a star and the stronger the surface gravity, the steeper the expected macroturbulence gradient. The mean macroturbulence velocity increases for stars with higher temperatures, weaker gravity, and faster rotation. The mean macro- and microturbulence velocities are correlated with each other and with the rotation velocity in the examined stars. The ratio between the macroturbulence velocity and the rotation velocity in solar-type stars varies from 1 (the hottest stars) to 1.7 (the coolest stars). The age dependence of the rotation velocity is more pronounced than that of the velocity of macroturbulent motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. S. Gadun and V. A. Sheminova, “SPANSAT: the Program for LTE Calculations of Absorption Line Profiles in Stellar Atmospheres,” Preprint ITF-88-87R (Institute of Theoretical Physics, Ukrainian SSR Academy of Sciences, 1988).

    Google Scholar 

  2. E. A. Gurtovenko and V. A. Ratnikova, “Study of microturbulence from equivalent widths of moderate and moderately strong Fe I lines,” Astrom. Astrofiz. 30, 14–25 (1976).

    ADS  Google Scholar 

  3. V. A. Sheminova, “Determination of microturbulent and macroturbulent velocity and an improved evaluation of the damping constant from Fraunhofer line profiles,” Astrom. Astrofiz. 51, 42–45 (1984).

    ADS  Google Scholar 

  4. V. A. Sheminova, “Turbulence in the photosphere of the Sun as a star. III. Micro-macroturbulence,” Soln. Dannye 8, 70–78 (1984).

    ADS  Google Scholar 

  5. M. Asplund, N. Grevesse, and A. J. Sauval, “The solar chemical composition,” ASP Conf. Ser. 336, 25–38 (2005).

    Google Scholar 

  6. P. S. Barklem and J. Aspelund-Johansson, “The broadening of Fe II lines by neutral hydrogen collisions,” Astron. Astrophys. 435, 373–377 (2005).

    Article  ADS  Google Scholar 

  7. P. S. Barklem, N. Piskunov, and B. J. O’Mara, “A list of data for the broadening of metallic lines by neutral hydrogen collisions,” Astron. Astrophys. Suppl. 142, 467–473 (2000).

    ADS  Google Scholar 

  8. J. M. Brewer, D. A. Fischer, J. A. Valenti, and N. Piskunov, “Spectral properties of cool stars: Extended abundance analysis of 1.617 planet-search stars,” Astrophys. J. 225, 32 (2016).

    Article  ADS  Google Scholar 

  9. H. Bruntt, T. R. Bedding, P.-O. Quirion, G. Lo Curto, F. Carrier, B. Smalley, T. N. Dall, T. Arentoft, M. Bazot, and R. P. Butler, “Accurate fundamental parameters for 23 bright solar-type stars,” Mon. Not. R. Astron. Soc. 405, 1907–1923 (2010).

    ADS  Google Scholar 

  10. A. P. Doyle, G. R. Davies, B. Smalley, W. J. Chaplin, and Y. Elsworth, “Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler,” Mon. Not. R. Astron. Soc. 444, 3592–3602 (2014).

    Article  ADS  Google Scholar 

  11. J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. and Chem. Ref. Data. 35, 1669–1809 (2006).

    Article  ADS  Google Scholar 

  12. A. S. Gadun and R. I. Kostyk, “Analysis of absorption line profiles in the spectra of the Sun and Procyon — Velocity field and size of inhomogeneities,” Sov. Astron. 34, 260–263 (1990).

    ADS  Google Scholar 

  13. G. Gonzalez, “Spectroscopic analyses of the parent stars of extrasolar planetary system candidates,” Astron. Astrophys. 334, 221–238 (1998).

    ADS  Google Scholar 

  14. D. F. Gray, “On the existence of classical microturbulence,” Astrophys. J. 184, 461–472 (1973).

    Article  ADS  Google Scholar 

  15. D. F. Gray, “Atmospheric turbulence measured in stars above the main sequence,” Astrophys. J. 202, 148–164 (1975).

    Article  ADS  Google Scholar 

  16. D. F. Gray, “A test of the micro-macroturbulence model on the solar flux spectrum,” Astrophys. J. 218, 530–538 (1977).

    Article  ADS  Google Scholar 

  17. D. F. Gray, “Turbulence in stellar atmospheres,” Sol. Phys. 59, 193–236 (1978).

    Article  ADS  Google Scholar 

  18. D. F. Gray, “Observations of spectral line asymmetries and convective velocities in F, G, and K stars,” Astrophys. J. 255, 200–209 (1982).

    Article  ADS  Google Scholar 

  19. D. F. Gray, “The temperature dependence of rotation and turbulence in giant stars,” Astrophys. J. 262, 682–699 (1982).

    Article  ADS  Google Scholar 

  20. D. F. Gray, “Measurements of rotation and turbulence in F, G, and K dwarfs stars,” Astrophys. J. 281, 719–722 (1984).

    Article  ADS  Google Scholar 

  21. D. F. Gray, The Observation and Analysis of Stellar Photospheres, 3rd ed. (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  22. D. F. Gray, “The stable K0 giant star beta Gem,” Astrophys. J. 796, 88 (2014).

    Article  ADS  Google Scholar 

  23. D. F. Gray, “A spectral-line analysis of the G8 III standard ε Vir,” Astrophys. J. 845, 62 (2017).

    Article  ADS  Google Scholar 

  24. D. F. Gray, “A Solar-flux line-broadening analysis,” Astrophys. J. 857, 139 (2018).

    Article  ADS  Google Scholar 

  25. E. A. Gurtovenko and V. A. Sheminova, “'Crossing' method for studying the turbulence in solar and stellar atmospheres. I — Application to the Sun,” Sol. Phys. 106, 237–247 (1986).

    Article  ADS  Google Scholar 

  26. E. A. Gurtovenko and V. A. Sheminova, “Formation depths of Fraunhofer lines” (2015). arXiv 1505.00975

  27. B. Gustafsson, B. Edvardsson, K. Eriksson, U. G. Jorgensen, A. Nordlund, and B. Plez, “A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties,” Astron. Astrophys. 486, 951–970 (2008).

    Article  ADS  Google Scholar 

  28. K. Hinkle and L. Wallace, “The spectrum of Arcturus from the infrared through the ultraviolet,” in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Ed. by T. G. Barnes and F. N. Bash (Astron. Soc. Pac., San Francisco, CA, 2005), in Ser.: ASP Conference Series, Vol. 336.

  29. O. M. Ivanyuk, J. S. Jenkins, Ya. V. Pavlenko, H. R. A. Jones, and D. J. Pinfield, “The metal-rich abundance pattern – spectroscopic properties and abundances for 107 main-sequence stars,” Mon. Not. R. Astron. Soc. 468, 4151–4169 (2017).

    Article  ADS  Google Scholar 

  30. J. S. Jenkins, H. R. A. Jones, and K. Gozdziewski, “First results from the Calan–Hertfordshire Extrasolar Planet Search: Exoplanets and the discovery of an eccentric brown dwarf in the desert,” Mon. Not. R. Astron. Soc. 398, 911–917 (2009).

    Article  ADS  Google Scholar 

  31. R. I. Kostik, “Damping constant and turbulence in the solar atmosphere,” Sol. Phys. 78, 39–57 (1982).

    Article  ADS  Google Scholar 

  32. F. Kupka, N. Piskunov, T. A. Ryabchikova, H. C. Stempels, and W. W. Weiss, “VALD-2: Progress of the Vienna Atomic Line Data Base,” Astron. Astrophys. Suppl. 138, 119–133 (1999).

    ADS  Google Scholar 

  33. R. L. Kurucz, Atlas: A Computer Program for Calculating Model Stellar Atmospheres, SAO Special Report No. 309 (Smithson. Astrophys. Obs., Cambridge, MA, 1970).

  34. J. Melendez and B. Barbuy, “Both accurate and precise gf-values for Fe II lines,” Astron. Astrophys. 497, 611–617 (2009).

    Article  ADS  Google Scholar 

  35. V. Neves, N. C. Santos, S. G. Sousa, A. C. M. Correia, and G. Israelian, “Chemical abundances of 451 stars from the HARPS GTO planet search program. Thin disc, thick disc, and planets,” Astron. Astrophys. 497, 563–581 (2009).

    Article  ADS  Google Scholar 

  36. P. E. Nissen, “Metal abundance and microturbulence in F0-G2 stars and the calibration oftheStromgrenml index,” Astron. Astrophys. 97, 145–156 (1981).

    ADS  Google Scholar 

  37. Y. V. Pavlenko, B. M. Kaminsky, J. S. Jenkins, O. M. Ivanyuk, H. R. A. Jones, and Y. P. Lyubchik, “Masses, oxygen, and carbon abundances in CHEPS dwarf stars,” Astron. Astrophys. 621, A112 (2019).

    Article  ADS  Google Scholar 

  38. S. H. Saar and R. A. Osten, “Rotation, turbulence and evidence for magnetic fields in southern dwarfs,” Mon. Not. R. Astron. Soc. 284, 803–810 (1997).

    Article  ADS  Google Scholar 

  39. P. Scott, M. Asplund, N. Grevesse, M. Bergemann, and A. J. Sauval, “The elemental composition of the Sun. II. The iron group elements Sc to Ni,” Astron. Astrophys. 537, A26 (2015).

    Article  Google Scholar 

  40. V. A. Sheminova, “Fourier analysis of spectra of solar-type stars,” Kinematics Phys. Celestial Bodies 33, 217–230 (2017).

    Article  ADS  Google Scholar 

  41. V. A. Sheminova and A. S. Gadun, “Fourier analysis of Fe I lines in the spectra of the Sun, alpha Centauri A, Procyon, Arcturus, and Canopus,” Kinematics Phys. Celestial Bodies 14, 169–179 (1998).

    ADS  Google Scholar 

  42. M. A. Smith, “Applications of Fourier analysis to broadening of stellar line profiles. IV. A technique for separating macroturbulence from rotation in solar-type stars,” Astrophys. J. 208, 487–499 (1976).

    Article  ADS  Google Scholar 

  43. M. A. Smith, “An anticorrelation between macroturbulence and age in G stars near the main sequence,” Astrophys. J. 224, 584–594 (1978).

    Article  ADS  Google Scholar 

  44. M. A. Smith, “Rotational studies of lower main-sequence stars,” Publ. Astron. Soc. Pac. 91, 737–745 (1979).

    Article  ADS  Google Scholar 

  45. S. G. Sousa, N. C. Santos, G. Israelian, C. Lovis, M. Mayor, G. Lo Curto, and S. Udry, “Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation,” Astron. Astrophys. 533, A141 (2011).

    Article  ADS  Google Scholar 

  46. Y. Takeda, “Analyses of line profiles in the solar flux spectrum for determining rotation and micro/macro turbulence,” Publ. Astron. Soc. Jpn. 47, 337–354 (1995).

    ADS  Google Scholar 

  47. Y. Takeda and S. UeNo, “Does the radial-tangential macroturbulence model adequately describe the spectral line broadening of solar-type stars?,” Publ. Astron. Soc. Jpn. 69, 46 (2017).

    ADS  Google Scholar 

  48. J. A. Valenti and D. A. Fischer, “Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs,” Astrophys. J. Suppl. 159, 141–166 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Ya. Pavlenko and A. Ivanyuk for providing stellar spectra and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sheminova.

Ethics declarations

This study was funded as part of the routine financing program for institutes of the National Academy of Sciences of Ukraine.

Additional information

Translated by D. Safin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheminova, V.A. Turbulence and Rotation in Solar-Type Stars. Kinemat. Phys. Celest. Bodies 35, 129–142 (2019). https://doi.org/10.3103/S088459131903005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459131903005X

Keywords:

Navigation