Skip to main content
Log in

On the Role of MHD Turbulence in the Decrease of Electrical Conductivity of Plasma in the Sun’s Active Magnetic Region

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

To overcome the difficulty in effective dissipation of currents in electromagnetic flare models associated with high gas-kinetic conductivity of the solar plasma, attention is given to the possibility of a local decrease in conductivity in the places of highly developed MHD turbulence near the neutral lines of photospheric magnetic configurations. The concept of redistribution of electrical conductivity, which is based on the following physical effects and conditions known from the observations in the solar atmosphere, is proposed: (1) A decrease in the electrical conductivity parameter (increase in the resistivity) in a turbulent medium. (2) Magnetic suppression of turbulence under the influence of strong magnetic fields. (3) Excitation of a large-scale electric field by macroscopic plasma motions in the photosphere in the presence of a magnetic field (photospheric dynamo). (4) The observable spatial inhomogeneous structure of magnetic configurations in the vicinity of sunspot groups, which leads to the formation of current layers with zero (neutral) magnetic fields lines. The calculated values of the MHD-turbulent conductivity near neutral magnetic lines in the photosphere turn out to be almost three orders of magnitude smaller than the values of the regular gas-kinetic conductivity in the places of strong magnetic fields in the vicinity of sunspots. A significantly reduced conductivity in the regions of highly developed MHD turbulence can contribute to accelerated Joule current dissipation, whose energy is consistent with the characteristics of thermal flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. I. Vainshtein, Ya. B. Zel’dovich, and A. A. Ruzmaikin, Turbulent Dynamo in Astrophysics, (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. V. N. Krivodubskii, “Electric conductivity of the substance in below-photospherics layers on the Sun,” Probl. Kosm. Fiz. 8, 3–15 (1973).

    Google Scholar 

  3. V. N. Krivodubskii, “On turbulent conductivity and magnetic permeability of solar plasma,” Soln. Dannye, No. 7, 99–109 (1982).

    ADS  Google Scholar 

  4. V. N. Obridko, Sunspots and Complexes of Activity (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. A. V. Stepanov, “Fundamental models of flares,” in Plasma Heliogeophysics, Vol. 1, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  6. S.-I. Akasofu, “An electric-current description of solar flares,” Astrophys. Space Sci. 144, 303–309 (1988).

    ADS  Google Scholar 

  7. H. Alfvén and P. Carlqvist, “Currents in the solar atmosphere and a theory of solar flares,” Sol. Phys. 1, 220–228 (1967).

    Article  ADS  Google Scholar 

  8. O. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, “The Harvard-Smithsonian reference atmosphere,” Sol. Phys. 18, 347–365 (1971).

    Article  ADS  Google Scholar 

  9. R. G. Giovanelli, “A theory of chromospheric flares,” Nature 158, 81–82 (1946).

    Article  ADS  Google Scholar 

  10. R. G. Giovanelli, “Magnetic and electric phenomena in the Sun’s atmosphere associated with sunspot,” Mon. Not. R. Astron. Soc. 107, 338–355 (1947).

    Article  ADS  MATH  Google Scholar 

  11. R. G. Giovanelli, “Chromospheric flares,” Mon. Not. R. Astron. Soc. 108, 163–176 (1948).

    Article  ADS  Google Scholar 

  12. T. Gold and F. Hoyle, “On the origin of solar flares,” Mon. Not. R. Astron. Soc. 120, 89–105 (1960).

    Article  ADS  Google Scholar 

  13. J. Heyvaerts, E. Priest, and D. Rust, “An emerging flux model for the solar flare phenomenon,” Astrophys. J. 216, 213–231 (1977).

    Article  ADS  Google Scholar 

  14. J. R. Kan, S.-I. Akasofu, and L. S. Lee, “A dynamo theory of solar flares,” Sol. Phys. 84, 153–167 (1983).

    Article  ADS  Google Scholar 

  15. M. Kopecky and G. V. Kuklin, “On a more precise calculation of the electric conductivity in the photosphere and in sunspot,” Sol. Phys. 6, 241–250 (1969).

    Article  ADS  Google Scholar 

  16. A. G. Kosovichev and V. V. Zharkova, “Magnetic energy release and transients in the solar flare of 2000 July 14,” Astrophys. J. 550, L105–L108 (1991).

    Article  ADS  Google Scholar 

  17. F. Krause and K.-H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  18. V. N. Krivodubskij, “Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone,” Astron. Nachr. 326, 61–74 (2005).

    Article  ADS  Google Scholar 

  19. V. N. Krivodubskij, “Turbulent effects of sunspot magnetic field reconstruction,” Kinematics Phys. Celestial Bodies 28, 232–238 (2012).

    Article  ADS  Google Scholar 

  20. D. B. Melrose, “Solar flares — Current dissipation or magnetic annihilation?,” Aus. J. Phys. 46, 167–193 (1993).

    Article  ADS  Google Scholar 

  21. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  22. E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  23. H. K. Sen and M. L. A. White, “Physical mechanism for the production of solar flares,” Sol. Phys. 23, 146–154 (1972).

    Article  ADS  Google Scholar 

  24. A. B. Severny, “Solar magnetic fields,” Space Sci. Rev. 3, 451–486 (1964).

    Article  ADS  Google Scholar 

  25. B. V. Somov, Physical Processes in Solar Flares (Kluwer, Dordrecht, 1992).

    Book  Google Scholar 

  26. B. V. Somov, “On the magnetic reconnection of electric currents in solar flares,” Astron. Lett. 38, 128–138 (2012).

    Article  ADS  Google Scholar 

  27. M. Stix, The Sun, 2nd ed. (Springer-Verlag, Berlin, 2002).

  28. V. V. Zaitsev and A. V. Stepanov, “On the dynamo theory of solar flares,” Sov. Astron. 35, 189–193 (1991).

    ADS  Google Scholar 

  29. Ya. V. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Krivodubskij.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivodubskij, V.N. On the Role of MHD Turbulence in the Decrease of Electrical Conductivity of Plasma in the Sun’s Active Magnetic Region. Kinemat. Phys. Celest. Bodies 35, 124–128 (2019). https://doi.org/10.3103/S0884591319030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319030048

Keywords:

Navigation