Skip to main content
Log in

On Determining the Vertical Structure of the Aerosol Component in the Atmosphere of Saturn

  • Dynamics and Physics of Bodies of The Solar System
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Relying upon the values of the geometric albedo of Saturn obtained in the methane absorption bands at λ = 887, 864, 842, 727, and 619 nm in 1993, how the aerosol and gaseous scattering components of the effective optical depth change with depth in the atmosphere of the planet are analyzed. The model of homogeneous spherical aerosol particles is used. For the altitude levels in the pressure range from 0.18 to 1.5 bar, that the parameters of aerosol particles used in the analysis are close to their actual values is confirmed. Above the level of 0.054 bar, the presence of stratospheric aerosol was detected. At least seven peculiarities were found in the vertical structure of the cloud cover of the upper atmosphere of Saturn. The altitude position of the maximum relative concentration of aerosol was estimated at approximately a level of 0.3 or 0.12 bar given the relative concentration of methane as 0.0021 or 0.0533, respectively. In the atmospheric layers of Saturn, where the pressure is larger than 0.44 bar, the cloud extended in altitude and containing no distinguishable aerosol layers was found. In the layers deeper than 1.5 bar, indications of probable changes in the parameters of aerosol particles were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Avramchuk, L. A. Bugaenko, A. V. Morozhenko, and E. G. Yanovitskij, “The results of studies of Jupiter performed at the Main Astronomical Observatory of Ukrainian SSR Academy of Sciences,” Astrom. Astrofiz., No. 31, 54–68 (1977).

    ADS  Google Scholar 

  2. O. I. Bugaenko, “Generalized spherical functions in the Mi problem,” Fiz. Atmos. Okeana 12, 603–611 (1976).

    Google Scholar 

  3. O. I. Bugaenko, Zh. M. Dlugach, A. V. Morozhenko, and E. G. Yanovitskij, “On optical properties of the cloud layer of Saturn in the visible region of the spectrum,” Astron. Vestn. 9 (1), 13–21 (1975).

    ADS  Google Scholar 

  4. K. Yu. Ibragimov, Numerical Modeling of Stratified Cloudiness in Atmospheres of Gas Giants (Nauka, Alma-Ata, 1990).

    Google Scholar 

  5. A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).

    ADS  Google Scholar 

  6. O. V. Morozhenko, A. V. Morozhenko, Methods and Results of Remote Probing of Planetary Atmospheres (Naukova Dumka, Kyiv, 2004) [in Ukrainian].

    Google Scholar 

  7. S. K. Atreya, M. H. Wong, T. C. Owen, P. R. Mahaffy, H. B. Niemann, I. de Pater, P. Drossart, and Th. Encrenaz, “A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin,” Planet. Space Sci. 47, 1243–1262 (1999).

    Article  ADS  Google Scholar 

  8. S. K. Atreya and A.-S. Wong, “Coupled clouds and chemistry of the giant planets — A case for multiprobes,” Space Sci. Rev. 116, 121–136 (2005).

    Article  ADS  Google Scholar 

  9. D. Banfield, P. J. Gierasch, M. Bell, E. Ustinov, A. P. Ingersoll, A. R. Vasavada, R. A. West, and M. J. S. Belton, “Jupiter’s cloud structure from Galileo imaging data,” Icarus 135, 230–250 (1998).

    Article  ADS  Google Scholar 

  10. O. I. Bugaenko and A. V. Morozhenko, “Physical characteristics of the upper layers of Saturn’s atmosphere,” Adv. Space Res. 1 (8), 183–186 (1981).

    Article  ADS  Google Scholar 

  11. J. W. Chamberlain, “The atmosphere of Venus near her cloud tops,” Astrophys. J. 141, 1184–1205 (1965).

    Article  ADS  Google Scholar 

  12. R. Courtin, D. Gautier, A. Marten, B. Bezard, and R. Hanel, “The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra — NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio,” Astrophys. J. 287, 899–916 (1984).

    Article  ADS  Google Scholar 

  13. Z. M. Dlugach and M. I. Mishchenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 39, 102–111 (2005).

    Article  ADS  Google Scholar 

  14. Z. M. Dlugach and M. I. Mishchenko, “Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).

    Article  ADS  Google Scholar 

  15. Z. M. Dlugach and E. G. Yanovitskij, “The optical properties of Venus and the Jovian planets. II. Methods and results of calculations of the intensity of radiation diffusely reflected from semi-infinite homogeneous atmospheres,” Icarus 22, 66–81 (1974).

    Article  ADS  Google Scholar 

  16. L. N. Fletcher, K. H. Baines, T. W. Momary, A. P. Showman, P. G. J. Irwin, G. S. Orton, M. Roos-Serote, and C. Merlet, “Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy,” Icarus 214, 510–533 (2011).

    Article  ADS  Google Scholar 

  17. L. N. Fletcher, G. S. Orton, N. A. Teanby, P. G. J. Irwin, and G. L. Bjoraker, “Methane and its isotopologues on Saturn from Cassini/CIRS observations,” Icarus 199, 351–167 (2009).

    Article  ADS  Google Scholar 

  18. L. P. Giver, “Intensity measurements of the CH4 bands in the region 4350 Å to 10,600 Å,” J. Quant. Spectrosc. Radiat. Transfer 19, 311–322 (1978).

    Article  ADS  Google Scholar 

  19. E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 174–192 (1994).

    Article  ADS  Google Scholar 

  20. K. Kawata, “Circular polarization of sunlight reflected by planetary atmospheres,” Icarus 33, 217–232 (1978).

    Article  ADS  Google Scholar 

  21. J. S. Lewis, “The clouds of Jupiter and the NH3—H2O and NH3—H2S systems,” Icarus 10, 365–378 (1969).

    Article  ADS  Google Scholar 

  22. W. Macy, Jr., “An analysis of Saturn’s methane 3ν3 band profiles in terms of an inhomogeneous atmosphere,” Icarus 29, 49–56 (1976).

    Article  ADS  Google Scholar 

  23. K. I. Matcheva, B. J. Conrath, P. J. Gierasch, and F. M. Flasar, “The cloud structure of the Jovian atmosphere as seen by the Cassini/CIRS experiment,” Icarus 179, 432–448 (2005).

    Article  ADS  Google Scholar 

  24. I. Mendikoa, S. Pérez-Hoyos, and A. Sánchez-Lavega, “Probing clouds in planets with a simple radiative transfer model: The Jupiter case,” Eur. J. Phys. 33, 1611–1624 (2012).

    Article  Google Scholar 

  25. S. Merlet, Ph.D. Thesis (Univ. of Oxford, Oxford, 2013). https://www2.physics.ox.ac.uk/sites/default/files/2012-03-08/2_merlet_pdf_17256.pdf.

    Google Scholar 

  26. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res.: Atmos. 102, 16831–16847 (1997).

    Article  ADS  Google Scholar 

  27. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  28. A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).

    Article  ADS  Google Scholar 

  29. A. V. Morozhenko, “Ammonia in the atmospheres of Jupiter and Saturn: Absorption coefficients,” Kinematics Phys. Celestial Bodies 25, 182–188 (2009).

    Article  ADS  Google Scholar 

  30. A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “The vertical structure of Jupiter’s cloud layer before and after the impact of comet Shoemaker-Levy 9,” in Proc. European SL-9/Jupiter Workshop, Garching, February 13–15, 1995 (European Southern Observatory, Garching, 1995), p. 267.

    Google Scholar 

  31. A. V. Morozhenko and A. S. Ovsak, “Dependence of the aerosol component of optical thickness and the relative concentration of methane on depth in atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 25, 173–181 (2009).

    Article  ADS  Google Scholar 

  32. A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).

    Article  ADS  Google Scholar 

  33. A. V. Morozhenko and A. S. Ovsak, “On the possibility of determining the imaginary part of the complex refractive index of aerosol particles in an individual altitudinal cloud layer of Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 32, 294–298 (2016).

    Article  ADS  Google Scholar 

  34. A. V. Morozhenko, A. S. Ovsak, A. P. Vid’machenko, V. G. Tejfel, and P. G. Lysenko, “Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 30–37 (2016).

    Article  ADS  Google Scholar 

  35. O. J. Mousis, D. H. Atkinson, and the Hera Team, “Hera Saturn Entry Probe Mission,” A Proposal in Response to ESA Call for a Medium Size Mission Opportunity in ESA’s Science Programme for Launch in 2019–2030 (M5), Oct. 5, 2016. https://arxiv.org/abs/1510.07685.

  36. O. Muñoz, F. Moreno, A. Molina, et al., “Study of the vertical structure of Saturn’s atmosphere using HST/WFPC2 images,” Icarus 169, 413–428 (2004).

    Article  ADS  Google Scholar 

  37. A. S. Ovsak, “Calculation of effective optical depth of absorption line formation in homogeneous semi-infinite planetary atmosphere during anisotropic scattering,” Kinematics Phys. Celestial Bodies 26, 86–88 (2010).

    Article  ADS  Google Scholar 

  38. A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).

    Article  ADS  Google Scholar 

  39. A. S. Ovsak, “Changes in the characteristics of the upper layers of the Jovian atmosphere from the data on the integral observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 25–33 (2015).

    Article  ADS  Google Scholar 

  40. A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).

    Article  ADS  Google Scholar 

  41. A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 43–50 (2015).

    Article  ADS  Google Scholar 

  42. A. S. Ovsak, V. G. Teifel, and P. G. Lysenko, “Vertical structure of the volume scattering coefficient of aerosol in latitude belts of Jupiter’s disk,” Kinematics Phys. Celestial Bodies 32, 181–188 (2016).

    Article  ADS  Google Scholar 

  43. A. S. Ovsak, V. G. Tejfel, A. P. Vid’machenko, P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 119–130 (2015).

    Article  ADS  Google Scholar 

  44. O. Ovsak and N. Kostogryz, “The method of computer analysis a vertical structure of aerosol component in the atmospheres of the giant planets,” in Proc. AGU Chapman Conf. on Crossing Boundaries in Planetary Atmospheres: From Earth to Exoplanets, Annapolis, MD, June 24–28, 2013 (Am. Geophys. Union, 2013), abstract W3.

    Google Scholar 

  45. S. Pérez-Hoyos, A. Sanchez-Lavega, R. G. French, and J. F. Rojas, “Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003),” Icarus 176, 155–174 (2005).

    Article  ADS  Google Scholar 

  46. S. Pérez-Hoyos, A. Sánchez-Lavega, G. Orion, R. Hueso, et al., “The 2007 Jupiter’s North temperate belt disturbance. II. Vertical cloud structure models,” Bull. Am. Astron. Soc. 39, 443 (2007).

    ADS  Google Scholar 

  47. V. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment,” J. Geophys. Res.: Planets 103, 22891–22909 (1998).

    Article  ADS  Google Scholar 

  48. A. Sánchez-Lavega, R. Hueso, and S. Pérez-Hoyos, “The three-dimensional structure of Saturn’s equatorial jet at cloud level,” Icarus 187, 510–519 (2007).

    Article  ADS  Google Scholar 

  49. R. Santer and A. Dollfus, “Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn,” Icarus 48, 496–518 (1981).

    Article  ADS  Google Scholar 

  50. T. Sato, Y. Kasaba, Y. Takahashi, et al., “Latitudinal variations in vertical cloud structure of Jupiter as determined by ground-based observation with multispectral imaging,” in Proc. American Geophysical Union 2008 Fall Meeting, San Francisco, CA, 2008 (American Geophysical Union, 2008), abstract no. P11B-1271.

    Google Scholar 

  51. L. A. Sromovsky, K. H. Baines, and P. M. Fry, “Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra,” Icarus 226, 402–418 (2013).

    Article  ADS  Google Scholar 

  52. D. Stam, D. Banfield, P. J. Gierasch, and P. D. Nicholson, “Near-IR spectrophotometry of saturnian aerosols — Meridional and vertical distribution,” Icarus 152, 407–422 (2001).

    Article  ADS  Google Scholar 

  53. T. Temma, N. J. Chanover, A. A. Simon-Miller, D. A. Glenar, J. J. Hillman, and D. M. Kuehn, “Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging,” Icarus 175, 464–489 (2005).

    Article  ADS  Google Scholar 

  54. S. J. Weidenschilling and L. S. Lewis, “Atmospheric and cloud structures of the Jovian planets,” Icarus 20, 465–476 (1973).

    Article  ADS  Google Scholar 

  55. R. A. West, K. H. Baines, A. J. Friedson, et al., “Jovian clouds and haze,” in Jupiter. The Planet, Satellites and Magnetosphere, Ed. by F. Bagenal, T. Dowling, and W. B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 78–104.

    Google Scholar 

  56. R. A. West, K. H. Baines, E. Karkoschka, and A. Sánchez-Lavega, “Clouds and aerosols in Saturn’s atmosphere,” in Saturn from Cassini-Huygens, Ed. by M. Dougherty, (Springer-Verlag, Dordrecht, 2009), pp. 161–179.

    Chapter  Google Scholar 

  57. E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematics Phys. Celestial Bodies 13 (4), 1–19 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ovsak.

Additional information

Original Russian Text © A.S. Ovsak, 2018, published in Kinematika i Fizika Nebesnykh Tel, 2018, Vol. 34, No. 1, pp. 57–80.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsak, A.S. On Determining the Vertical Structure of the Aerosol Component in the Atmosphere of Saturn. Kinemat. Phys. Celest. Bodies 34, 37–51 (2018). https://doi.org/10.3103/S088459131801004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459131801004X

Keywords

Navigation