Skip to main content
Log in

A Study of Seismic Impacts on the Construction Site of the SRF SKIF

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The results of an experimental study of seismic vibrations at the site for the construction of the Siberian Ring Photon Source (SKIF), which is a synchrotron radiation source of the fourth plus generation at 3 GeV and a perimeter of 480 m, have been considered. Seismic vibrations are a hindrance that reduces the accuracy of the experimental setup when studying materials with precision accuracy and resolution. The experiment was performed with broadband seismological equipment used at seismological stations. Seismic vibrations from different types of sources have been investigated: natural and man-made earthquakes, industrial explosions, noises of automobile and railway transport, vibrations from industrial equipment at enterprises located away from the facility under construction. Natural earthquakes create the strongest broadband impact on the site. Man-made earthquakes in the area of the Gorlovka coal basin can create short-term strong seismic impacts. Industrial explosions in terms of the seismic impact on the site are significantly inferior to the effects of earthquakes and are characterized by a more limited spectral composition of vibrations. The noises of motor transport cover frequencies from 4 to 30 Hz and quickly fade away along the site with distance from the road. Railway noises have the characteristic appearance of a set of multiple harmonics covering a wide frequency range with a duration of up to 10 min. Monochromatic signals from the operation of industrial equipment on and off the site are recorded at the site. At the same time, both continuous signals and those that occur episodically are recorded. A special class consists of monochromatic oscillations with a slowly varying frequency. The information on the level, spectrum, and duration of seismic vibrations necessary for calculating the seismic protection of the SKIF Central Research Center during its creation and development of a seismological monitoring system that compensates for the seismic effect on the accuracy of experiments was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.

Similar content being viewed by others

REFERENCES

  1. Aleshin, A.S., Seismicheskoe mikroraionirovanie osobo otvetstvennykh ob”ektov (Seismic Microzoning of Critical Objects), Moscow: Svetoch Plyus, 2010.

  2. Bakh, A.A., Durachenko, A.V., and Emanov, A.F., RF Certificate of Software State Registration 2019619827, 2019.

  3. Baranov, G.N., Bogomyagkov, A.V., Levichev, E.B., and Sinyatkin, S.V., Magnet lattice optimization for Novosibirsk fourth generation light source SKIF, Sib. Fiz. Zh., 2020, vol. 15, no. 1, pp. 5–23. https://doi.org/10.25205/2541-9447-2020-15-1-5-23

    Article  Google Scholar 

  4. Bormann, P., New Manual of Seismological Observatory Practice (NMSOP), 2 vols., Postdam: GoeForschungsZentrum, 2002.

  5. Bratt, S.R. and Bache, T.C., Locating events with a sparse network of regional arrays, Bull. Seismol. Soc. Am., 1988, vol. 78, no. 2, pp. 780–798.  https://doi.org/10.1785/BSSA0780020780

    Article  Google Scholar 

  6. Burg, J.P., Three-dimensional filtering with an array of seismometers, Geophysics, 1964, vol. 29, no. 5, pp. 693–713.  https://doi.org/10.1190/1.1439406

    Article  Google Scholar 

  7. Buttkus, B., Spectral Analysis and Filter Theory in Applied Geophysics, Berlin: Springer, 2000.  https://doi.org/10.1007/978-3-642-57016-2

    Book  Google Scholar 

  8. Capon, J., High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE, 1969, vol. 57, no. 8, pp. 1408–1418.  https://doi.org/10.1109/PROC.1969.7278

    Article  Google Scholar 

  9. Capon, J., Signal processing and frequency-wavenumber spectrum analysis for a large aperture seismic array, Methods Comput. Phys.: Adv. Res. Appl., 1973, vol. 13, pp. 1–59.  https://doi.org/10.1016/B978-0-12-460813-9.50007-2

    Article  Google Scholar 

  10. Demidova, A.A. and Emanov, A.A., Algorithms of comparative analysis of seismic noises, Trofimukovskie chteniya–2008 (Trofimuk Readings 2008), Novosibirsk: Inst. Neftegazovoi Geol. Geofiz. im. A.A. Trofimuk, 2008), pp. 193–195.

  11. Emanov, A.F. and Emanov, A.A., Seismic monitoring of technogenic impact on the territory of Western Siberia, Seismostoikoe Stroit. Bezop. Sooruzh., 2019, no. 4, pp. 48–53.

  12. Emanov, A.F., Krasnikov, A.A., Bakh, A.A., Chernykh, E.N., Emanov, A.A., Semin, A.Yu., and Cherepanov, A.V., Resonance properties of the upper part of the geological section, Fiz. Mezomekh., 2008, vol. 11, no. 2, pp. 26–36.

    Google Scholar 

  13. Emanov, A.F., Vorona, U.Yu., Smoglyuk, A.S., Emanov, A.A., and Leskova, E.V., Microseismicity in Kamen’-on-Obi, Altai krai, Zemletryaseniya v Rossii v 2010 godu (Earthquakes in Russia in 2010), Obninsk: Geofiz. Sluzhba Ross. Akad. Nauk, 2012, pp. 96–99.

  14. Emanov, A.A., Korabel’shchikov, D.G., Dzyubarova, Yu.O., and Durachenko, A.V., Development of software-hardware complex of automated acquisition, storage, and processing of seismological data of the network of stations of Altai-Sayany region: Retrospective, analysis, and prospects, 50 let seismologicheskogo monitoringa Sibiri. Tezisy dokladov Vseross. konf. s mezhdunar. uchastiem (50 Years of Siberian Seismological Monitoring: Proc. All-Russ. Conf. with Int. Participation), Novosibirsk: Poligrafika, 2013, pp. 48–53.

  15. Emanov, A.F., Emanov, A.A., Pavlenko, O.V., Fateev, A.V., Kuprish, O.V., and Podkorytova, V.G., Kolyvan earthquake of January 9, 2019, with M L = 4.3 and induced seismicity features of the Gorlovsky coal basin, Seism. Instrum., 2020, vol. 56, no. 3, pp. 254–268. https://doi.org/10.3103/S0747923920030020

    Article  Google Scholar 

  16. Emanov, A.F., Emanov, A.A., Fateev, A.V., Solov’ev, V.M., Shevkunova, E.V., Gladyshev, E.A., Antonov, I.A., Korabel’shchikov, D.G., Podkorytova, V.G., Yankaitis, V.V., Elagin, S.A., Serezhnikov, N.A., Durachenko, A.V., and Artemova, A.I., Seismological studies on the territory of Altai-Sayany mountain region, Ross. Seismol. Zh., 2021a, vol. 3, no. 2, pp. 20–51. https://doi.org/10.35540/2686-7907.2021.2.02

    Article  Google Scholar 

  17. Emanov, A.F., Emanov, A.A., Fateev, A.V., Shevkunova, E.V., and Gladyshev, E.A., Technogenic seismic activation in region of Gorlovsky coal basin, Fundam. Prikl. Vopr. Gornykh Nauk, 2021b, vol. 8, no. 1, pp. 207–210. https://doi.org/10.15372/FPVGN2021080132

    Article  Google Scholar 

  18. Fuchs, F. and Bokelmann, G., Equidistant spectral lines in train vibrations, Seismol. Res. Lett., 2018, vol. 89, no. 1, pp. 56–66. https://doi.org/10.1785/0220170092

    Article  Google Scholar 

  19. Gurov S.M., Volkov, V.M., Zolotarev, K.V., and Levichev, A.E., Injection system for the Siberian ring source of photons, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2020, vol. 14, no. 7, pp. 651–654.  https://doi.org/10.1134/S1027451020030271

    Article  Google Scholar 

  20. Hanka, W., Saul, J., Weber, B., Becker, J., Harjadi, P., Fauzi, and GITEWS Seismology Group, Real-time earthquake monitoring for tsunami warning in the Indian ocean and beyond, Nat. Hazards Earth Syst. Sci., 2010, vol. 10, no. 12, pp. 2611–2622.  https://doi.org/10.5194/nhess-10-2611-2010

    Article  Google Scholar 

  21. IASPEI 1991 Seismological Tables, Kennett, B.L.N., Ed., Research School of Earth Sciences, Australian Natl. Univ., 1991.

  22. Kennett, B.L.N., The Seismic Wavefield, vol. 2: Interpretation of Seismograms on Regional and Global Scale, Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  23. Khaikin, S.E., Fizicheskie osnovy mekhaniki. Uchebnoe posobie (Physical Foundations of Mechanics: Textbook), Moscow: Nauka, 1971, 2nd ed.

  24. Kulipanov, G.N., Mezentsev, N.A., and Pindyurin, V.F., Synchrotron radiation in Novosibirsk: The first 13 years, J. Struct. Chem., 2016, vol. 57, no. 7, pp. 1277–1287.  https://doi.org/10.1134/S0022476616070015

    Article  Google Scholar 

  25. Kværna, T. and Doornbos, D.J., An integrated approach to slowness analysis with arrays and three-component stations, NORSAR Sci. Rep., 1986, no. 2-85/86, pp. 60–69.

  26. Kværna, T. and Ringdahl, F., Stability of various f-k estimation techniques, NORSAR Sci. Rep., 1986, no. 1-86/87, pp. 29–40.

  27. Lacoss, R.T., Geometry and Patterns of Large Aperture Seismic Arrays, Lexington Lincoln Lab, Mass. Inst. Technol., 1965.

  28. Liaw, A.L. and McEvilly, T.V., Microseisms in geothermal exploration; studies in Grass Valley, Nevada, Geophysics, 1979, vol. 44, no. 6, pp. 1097–1115.  https://doi.org/10.1190/1.1440998

    Article  Google Scholar 

  29. Linville, F.A. and Laster, S.J., Numerical experiments in the estimation of frequency-wavenumber spectra of seismic events using linear arrays, Bull. Seismol. Soc. Am., 1966, vol. 56, no. 6, pp. 1337–1355.  https://doi.org/10.1785/BSSA0560061337

    Article  Google Scholar 

  30. McNamara, D.E. and Buland, R.P., Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 4, pp. 1517–1527.  https://doi.org/10.1785/012003001

    Article  Google Scholar 

  31. Medvedev, S.V., Inzhenernaya seismologiya (Engineering Seismology), Moscow: Gosstroiizdat, 1962.

  32. Ødegaard, E., Doornbos, D.J., and Kværna, T., Surface topographic effects at arrays and three-component stations, Bull. Seismol. Soc. Am., 1990, vol. 80, no. 6B, pp. 2214–2226. https://doi.org/10.1785/BSSA08006B2214

    Article  Google Scholar 

  33. Oppenheim, A.V., Schafer, R.W., and Buck, J.R., Discrete-Time Signal Processing, Upper Saddle River, N.J.: Prentice Hall, 1999.

    Google Scholar 

  34. Peterson, J., Observations and Modeling of Seismic Background Noise, Open-File Report 93–322, U.S. Geological Survey, 1993.  https://doi.org/10.3133/ofr93322

  35. Rost, S. and Thomas, C., Array seismology: methods and applications, Rev. Geophys., 2002, vol. 40, no. 3, p. 2.  https://doi.org/10.1029/2000RG000100

    Article  Google Scholar 

  36. Seismicheskoe mikroraionirovanie (Seismic Microzoning), Pavlov, O.V., Ed., Moscow: Nauka, 1984.

    Google Scholar 

  37. Shteinberg V.V. (Ed.), Methods of assessing seismic impact, Vopr. Inzh. Seismol., 1993, no. 34, pp. 5–94.

  38. Trnkoczy, A., Understanding and parameter setting of STA/LTA trigger algorithm, New Manual of Seismological Observatory Practice 2 (NMSOP-2), Bormann, P., Ed., Potsdam: GeoForschungsZentrum, 2012.

  39. Vinnik, L.P., Struktura mikroseism i nekotorye voprosy metodiki gruppirovaniya v seismologii (Structure of Microseisms and Some Issues of the Grouping Technique in Seismology), Moscow: Nauka, 1968.

  40. Weber, B., Becker, J., Hanka, W., Heinloo, A., Hof-fmann, M., Kraft, T., Pahlke, D., Reinhardt, J., and Thoms, H., Seiscomp3—Automatic and interactive real time data processing, Geophys. Res. Abstr., 2007, vol. 9, p. 09219. https://gfzpublic.gfz-potsdam.de/pubman/item/i tem_236582.

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Federal Research Center “Geophysical Survey of the Russian Academy of Sciences” under project no. 075-00576-21 using data obtained at the UNU SIZK IAC (https://ckp-rf.ru/usu/507436/), partially implemented with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task of the SRF SKIF, Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (project no. 122070400038-1) and Agreement no. 2036/21/UE dated December 23, 2021 with the Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Emanov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by S. Avodkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emanov, A.A., Emanov, A.F., Levichev, E.B. et al. A Study of Seismic Impacts on the Construction Site of the SRF SKIF. Seism. Instr. 58, 635–662 (2022). https://doi.org/10.3103/S0747923922060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922060044

Keywords:

Navigation