Skip to main content
Log in

A Short-Period Vertical Seismometer and Auxiliary Equipment for Installation in Boreholes

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

A new short-period borehole seismometer TBSC6 designed and produced at the Dukhov All-Russian Scientific Research Institute on Automatics provides proportional transformation of vertical seismic velocity oscillation to electrical signal. The seismometer has been designed for installation in boreholes with an inner diamter of 145–220 mm and inclination up to 3.5°. In its technical features (frequency range 0.5–100 Hz, linearity less than 0.006%, noise level less then –10 dB of the low seismic noise model, dynamic range greater than 145 dB, temperature range –25 to 50°C), the seismometer corresponds with the best short-period borehole seismometers in the world. The features achieved make it possible to use the short-period borehole seismometer for seismological observations of both far and local seismic sources and also for seismic situation monitoring in the vicinity of hydrotechnical structures, nuclear power plants, etc.. Auxiliary equipment (locking device, installation complex set with the borehole ahead) provides seismometer installation in boreholes with an inner diameter 145–220 mm at depth down to 100 m. Borehole ahead saves borehole tube with an outer diameter of 150–250 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Abramovich, I.A., Agafonov, V.M., Daragan, S.K., Kozlov, V.A., and Kharlamov, A.V., Development of seismic sensors on novel technological principles, Seism. Prib., 1999, no. 31, pp. 56–71.

  2. Abramovich, I.A., Agafonov, V.M., Daragan, S.K., Kozlov, V.A, and Kharlamov, A.V., The improvement of old technologies and the application of novel techniques in seismometry, Geofiz. Probl. Nerasprostraneniya. Vestn. Nats. Yadernogo Tsentra Resp. Kaz., 2001, vol. 2, no. 6, pp. 39–47.

    Google Scholar 

  3. Antonovskaya, G.N., Kapustian, N.K., and Rogozhin, E.A., Seismic monitoring of industrial objects: Problems and solutions, Seism. Instrum., 2016, vol. 52, no. 1, pp. 1–8.  https://doi.org/10.3103/S0747923916010011

    Article  Google Scholar 

  4. Bashilov, I.P. and Konovalov, V.A., The development and application of digital instrumentation in the practice of geophysical research and nuclear test monitoring, Geofiz. Probl. Nerasprostraneniya. Vestn. Nats. Yadernogo Tsentra Resp. Kaz., 2001, vol. 2, no. 6, pp. 33–38.

    Google Scholar 

  5. Bashilov, I.P., Daragan, S.K., and Kabychenko, N.V., Noise parameters of seismic sensors, Geofiz. Probl. Nerasprostraneniya. Vestn. Nats. Yadernogo Tsentra Resp. Kaz., 2001, vol. 2, no. 10, pp. 19–29.

    Google Scholar 

  6. Berger, J., Bolton, H., Davis, P., Ekstrom, G., and Hutt, C., The GSN Noise Model: Estimates of the Least Ambient Earth Noise from the IRIS Global Seismographic Network, Am. Geophys. Union, Harvard Univ., 2002.

    Google Scholar 

  7. Borehole short-period seismometer. Models GS-13BH, GS-21 and 20171. Geotech Instruments, LLC, 1999. www.geoinstr.com.

  8. Bugaev, E.G., Kishkina, S.B., and Sanina, I.A., Seismic monitoring peculiarities of nuclear energy facilities at East European Platform, Yad. Radiats. Bezop., 2012, no. 3, pp. 3–11.

  9. Burmin, V.Yu., Avetisyan, A.M., Sergeeva, N.A., and Kazaryan, K.S., Some seismicity regularities of the Caucasus, Seism. Instrum., 2014, vol. 50, pp. 192–195.  https://doi.org/10.3103/S0747923914030025

    Article  Google Scholar 

  10. Burmin, V.Yu., Avetisyan, A.M., Karapetyan, J.K., and Oganesyan, A.O., Construction of the average curve of the seismic velocity of the crust in the territory of Armenia from profile seismic observation data, Seism. Instrum., 2022, vol. 58, pp. 26–31.  https://doi.org/10.3103/S0747923922010042

    Article  Google Scholar 

  11. Dai, K., Li, X., Lu, C., You, Q., Huang, Z., and Wu, H.F., A low-cost energy-efficient cableless geophone unit for passive surface wave surveys, Sensors, 2015, vol. 15, no. 10, pp. 24698–24715.  https://doi.org/10.3390/s151024698

    Article  Google Scholar 

  12. El’tekov, A.Yu., Stolyarov, O.A., Brednev, S.P., and Sleptsov, V.I., Experience of studying the characteristics of seismic instruments on Borovoe test site, Geofiz. Probl. Nerasprostraneniya. Vestn. Nats. Yadernogo Tsentra Resp. Kaz., 2004, no. 2, pp. 65–70.

  13. Etgen, J., Gray, S.H., and Zhang, Yu., An overview of depth imaging in exploration geophysics, Geophysics, 2009, vol. 74, no. 6, p. WCA5–WCA17.  https://doi.org/10.1190/1.3223188

    Article  Google Scholar 

  14. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., and Davies, R.J., Global review of human-induced earthquakes, Earth Sci. Rev., 2018, vol. 178, pp. 438–514.  https://doi.org/10.1016/j.earscirev.2017.07.008

    Article  Google Scholar 

  15. Havskov, J. and Alguacil, G., Instrumentation in Earthquake Seismology, Cham: Springer, 2002.  https://doi.org/10.1007/978-3-319-21314-9

    Book  Google Scholar 

  16. Kishkina, S.B., Bugaev, E.G., and Lobodenko, I.Yu., Development and implementation of a seismic monitoring system based on the safety guide “Seismic monitoring of areas siting hazardous nuclear or radiological facilities” (RB-142-18), Yad. Radiats. Bezop., 2021, no. 1, pp. 28–42.  https://doi.org/10.26277/SECNRS.2021.99.1.003

  17. Kishkina, S.B., Tatarinov, V.N., Bugaev, E.G., Gupalo, V.S., and Zabrodin, S.M., Underground research laboratory: Overcoming uncertainties in the assessment of seismic conditions for the Yeniseiskiy site, Radiats. Otkhody, 2021, no. 3, pp. 80–93.  https://doi.org/10.25283/2587-9707-2021-3-80-93

  18. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1976; Amsterdam: Elsevier, 1980.

  19. Nekrasov, V.N. and Sergeev, S.V., Comparison of characteristics of induction, capacitance, and piezoelectric transducer elements of seismic pickups, Seism. Prib., 1990, vol. 21, pp. 180–187.

    Google Scholar 

  20. Ryzhov, A.V., Elektrodinamicheskie seismopriemniki (Electrodynamic Seismic Pickups), Tver: GERS, 2009.

  21. Shnirman, G.L., Astazirovanie mayatnikov (Astatization of Pendulums), Moscow: Nauka, 1982.

  22. Thomas, A.M., Spica, Z., Bodmer, M., Schulz, J.J., and Roering, J.J., Using a dense seismic array to determine structure and site effects the two towers earth flow in Northern California, Seismol. Res. Lett., 2020, vol. 91, no. 2A, pp. 913–920.  https://doi.org/10.1785/0220190206

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the specialists of the All-Russian Research Institute of Automation of the State Corporation Rosatom, who participated in the development and testing of the seismic receiver and auxiliary equipment.

Funding

The study was carried out under the state order of the Dukhov All-Russian Scientific Research Institute of Automation of the State Corporation Rosatom and the state order of Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Bashilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashilov, I.P., Gerasimchuk, O.A., Sleptsov, V.I. et al. A Short-Period Vertical Seismometer and Auxiliary Equipment for Installation in Boreholes. Seism. Instr. 58, 521–533 (2022). https://doi.org/10.3103/S0747923922050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922050048

Keywords:

Navigation