Skip to main content
Log in

System for Automatic Recognition of Types of Sources of Regional Seismic Events

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

An approach to recognizing the types of seismic event sources is proposed, based on the combination of several heterogeneous parameters of event records and information about the territory where the seismic event occurred. The following recording parameters are used: the ratio of the amplitudes of body waves, the ratio of parts of the spectra at high and low frequencies, the magnitude, and the spectral constancy parameter. Territorial information includes data on the presence of waterbodies, glaciers, mines, and simplified information on natural seismic activity. Their joint use is done with a special type of Bayesian belief network. The decisions made by the network are probabilistic in nature; the probability is understood in the Bayesian sense, i.e., as the degree of confidence in the truth of the judgment, which consists in attributing an event to one of the types (mine explosion, other explosion on land, underwater explosion, earthquake, icequake). The approach is implemented as a software system, which is included in the program for the interactive analysis of seismic event records LOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Anderson, D.N., Randall, G.E., Whitaker, R.W., Arrowsmith, S.J., Arrowsmith, M.D., Fagan, D.K., Taylor, S.R., Selby, N.D., Schult, F.R., Kraft, G.D., and Walter, W.R., Seismic event identification, WIREs Comput. Stat., 2010, vol. 2, no. 4, pp. 414–432.  https://doi.org/10.1002/wics.105

    Article  Google Scholar 

  2. Asming, V.E., Fedorov, A.V., and Prokudina, A.V., The program LOS for interactive seismic and infrasonic data processing, Ross. Seismol. Zh., 2021, vol. 3, no. 1, pp. 27–40. https://doi.org/10.35540/2686-7907.2021.1.02

    Article  Google Scholar 

  3. Batyrshin, I.Z., Nedosekin, A.O., Stetsko, A.A., Tarasov, V.B., Yazenin, A.V., and Yarushkina, N.G., Nechetkie gibridnye sistemy. Teoriya i praktika (Fuzzy Hybrid Systems: Theory and Practice), Yarushkina, N.G., Ed., Moscow: Fizmatlit, 2007.

    Google Scholar 

  4. Beyreuther, M., Hammer, C., Wassermann, J., Ohrnberger, M., and Megies, T., Constructing a hidden Markov model based earthquake detector: Application to induced seismicity, Geophys. J. Int., 2012, vol. 189, no. 1, pp. 602–610.  https://doi.org/10.1111/j.1365-246X.2012.05361.x

    Article  Google Scholar 

  5. Casella, G. and George, E.I., Explaining the Gibbs sampler, Am. Stat., 1992, vol. 46, no. 3, pp. 167–174.  https://doi.org/10.1080/00031305.1992.10475878

    Article  Google Scholar 

  6. Cox, R.T., Algebra of Probable Inference, Johns Hopkins Univ. Press, 2001, p. 127.

    Google Scholar 

  7. Dong, L., Wesseloo, J., Potvin, Y., and Li, X., Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistic regression, Rock Mech. Rock Eng., 2016, vol. 49, no. 1, pp. 183–211.  https://doi.org/10.1007/s00603-015-0733-y

    Article  Google Scholar 

  8. Fedorov, A.V. and Asming, V.E., New approaches to detailed study of seismicity on example of the Svalbard archipelago, Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh: Tezisy XIV Mezhdunarodnoi seismologicheskoi shkoly (Modern Methods in Processing and Interpretation of Seismological Data: Proc. of the 14th Int. Seismological School), Malovichko, A.A., Ed., Obninsk: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2019, p. 102.

    Google Scholar 

  9. Gitterman, Y., Ben-Avraham, Z., and Ginzburg, A., Spectral analysis of underwater explosions in the dead sea, Geophys. J. Int., 1998, vol. 134, no. 2, pp. 460–472.  https://doi.org/10.1046/j.1365-246x.1998.00566.x

    Article  Google Scholar 

  10. Godzikovskaya, A.A., Mestnye vzryvy i zemletryaseniya (Local Explosions and Earthquakes), Moscow: Gidroproekt, 1995.

  11. Godzikovskaya, A.A., Besstrashnov, V.M., and Labzina, E.Yu., Problems of use of earthquake catalogs in solving applied seismological problems, in Geodinamika i tekhnogenez (materialy Vserossiiskogo soveshchaniya) (Geodynamics and Technogenesis: Materials of the All-Russian Meeting), Yaroslavl, 2000, pp. 38–40.

  12. Godzikovskaya, A.A., Asming, V.E., and Vinogradov, Yu.A., Retrospektivnyi analiz pervichnykh materialov po seismichnosti Kol’skogo poluostrova i prilegayushchikh territorii v XX veke (Retrospective Analysis of Primary Materials on Seismicity of Kola Peninsula and Neighboring Territories in the 20th Century), Moscow: Vash Poligraficheskii Partner, 2010.

  13. Kortström, J., Uski, M., and Tiira, T., Automatic classification of seismic events within a regional seismograph network, Comput. Geosci., 2016, vol. 87, pp. 22–30.  https://doi.org/10.1016/j.cageo.2015.11.006

    Article  Google Scholar 

  14. Kremenetskaya, E., Asming, V., Jevtjugina, Z., and Ringdal, F., Study of regional surface waves and frequency-dependent Ms:mb discrimination in the European Arctic, Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Seismic Event Discrimination and Identification, Walter, W.R. and Hartse, H.E., Eds., Pageoph Topical Volumes, Basel: Birkhäuser, 2002, pp. 721–733.  https://doi.org/10.1007/978-3-0348-8169-2_7

    Book  Google Scholar 

  15. Linville, L., Pankow, K., and Draelos, T., Deep learning models augment analyst decisions for event discrimination, Geophys. Res. Lett., 2019, vol. 46, no. 7, pp. 3643–3651.  https://doi.org/10.1029/2018GL081119

    Article  Google Scholar 

  16. Nefedov, A., Support Vector Machines: A Simple Tutorial, 2016. https://sustech-cs-courses.github.io/IDA/materials/Classification/SVM_tutorial.pdf.

  17. O’Rourke, C.T., Baker, G.E., and Sheehan, A.F., Using p/s amplitude ratios for seismic discrimination at local distances, Bull. Seismol. Soc. Am., 2016, vol. 106, no. 5, pp. 2320–2331.  https://doi.org/10.1785/0120160035

    Article  Google Scholar 

  18. Pomeroy, P.W., Best, W.J., and McEvilly, T.V., Test ban treaty verification with regional data–A review, Bull. Seismol. Soc. Am., 1982, vol. 72, no. 6B, pp. S89–S129.  https://doi.org/10.1785/BSSA07206B0089

    Article  Google Scholar 

  19. Ringdal, F., Kremenetskaya, E., and Asming, V., Observed characteristics of regional seismic phases and implications for P/S discrimination in the European Arctic, Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Seismic Event Discrimination and Identification, Walter, W.R. and Hartse, H.E., Eds., Pageoph Topical Volumes, Basel: Birkhäuser, 2002, pp. 701–719.  https://doi.org/10.1007/978-3-0348-8169-2_6

    Book  Google Scholar 

  20. Tulup’ev, A.L., Nikolenko, S.I., and Sirotkin, A.V., Baiesovskie seti. Lwogiko-veroyatnostnyi podkhod (Bayesian Networks: Logical-Probabilistic Approach), St. Petersburg: Nauka, 2006.

  21. Yıldırım, E., Gülbağ, A., Horasan, G., and Doğan, E., Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques, Comput. Geosci., 2011, vol. 37, no. 9, pp. 1209–1217.  https://doi.org/10.1016/j.cageo.2010.09.005

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using data obtained at the unique scientific installation “Seismic-Infrasonic Complex for Monitoring the Arctic Permafrost and Complex for Continuous Seismic Monitoring of the Russian Federation, Adjacent Territories, and the World.”

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation (within state task no. 075-01471-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Asming.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asming, V.E., Asming, S.V., Fedorov, A.V. et al. System for Automatic Recognition of Types of Sources of Regional Seismic Events. Seism. Instr. 58, 509–520 (2022). https://doi.org/10.3103/S0747923922050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922050036

Keywords:

Navigation