Skip to main content
Log in

Relocation of Early Instrumental Earthquakes in the Arctic

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The source parameters of earthquakes in the Arctic during the entire instrumental period were calculated using a small number of stations, which in addition were remote from each other. Furthermore, during the 20th century, the source parameters of Arctic earthquakes were most often calculated from bulletin data from only part of the seismic stations operating at that time, using outdated velocity models and localization algorithms. The present article describes an approach that has already been successfully used by the authors to refine the source parameters of early instrumental earthquakes in the Arctic. The approach uses all currently available archives of bulletins and seismograms from the seismic stations that operated in the early 20th century; it also employs the modern ak135 velocity model and an improved localization algorithm implemented in the NAS program. We have relocated the epicenters of earthquakes recorded within the Arctic in the early 20th century and compiled an updated catalog of relocated seismic events. The relocation procedure was applied to 18 out of 25 earthquakes in the Arctic. The new coordinates of some earthquakes appeared to significantly differ from the previously determined ones. As a result, this may significantly affect the ultimate seismic hazard assessment of such areas as Severnaya Zemlya and Franz Josef Land, which are characterized by weak seismicity. Most of the relocated earthquake epicenters are confined to the main seismically active zones of the Arctic, namely, mid-ocean ridges, the Svalbard archipelago, and the Laptev Sea shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alejandro, A.C.B., Hutt, C.R., Ringler, A.T., Moore, S.V., Anthony, R.E., and Wilson, D.C., The Albuquerque Seismological Lab WWSSN film chip preservation project, Seismol. Res. Lett., 2019, vol. 90, no. 1, pp. 401–408. https://doi.org/10.1785/0220180275

    Article  Google Scholar 

  2. Amorèse, D., Benjumea, J., and Cara, M., Source parameters of the 1926 and 1927 Jersey earthquakes from historical, instrumental, and macroseismic data, Phys. Earth Planet. Inter., 2020, vol. 300, p. 106420.  https://doi.org/10.1016/j.pepi.2019.106420

    Article  Google Scholar 

  3. Asming, V. and Prokudina, A., System for automatic detection and location of seismic events for arbitrary seismic station configuration NSDL, 35th General Assembly of the European Seismological Commission, Trieste, Italy, 2016, European Seismological Assembly, 2016, p. 35.

  4. Avetisov, G.P., Seismoaktivnye zony Arktiki (Seismically Active Zones of Arctic), St. Petersburg: Vseros. Nauch.-Issled. Inst. Geol. Mineral’nykh Resursov Mirovogo Okeana Gramberga, 1996.

  5. Bulletin of the National Research Council, List of Seismologic Stations of the World, McComb, H.E. and West, C.J., Eds., Washington, D.C.: The National Research Council of the National Academy of Science, 1931.

  6. Bungum, H., Pettenati, F., Schweitzer, J., Sirovich, L., and Faleide, J.I., The 23 October 1904 M S 5.4 Oslofjord earthquake: Reanalysis based on macroseismic and instrumental data, Bull. Seismol. Soc. Am., 2009, vol. 99, no. 5, pp. 2836–2854.  https://doi.org/10.1785/0120080357

    Article  Google Scholar 

  7. Emery, K.O., Topography and sediments of the Arctic Basin, J. Geol., 1949, vol. 57, no. 5, pp. 512–521.  https://doi.org/10.1086/625664

    Article  Google Scholar 

  8. Fedorov, A.V., Asming, V.E., Jevtjugina, Z.A., and Prokudina, A.V., Automated seismic monitoring system for the European Arctic, Seism. Instrum., 2019, vol. 55, no. 1, pp. 17–23.  https://doi.org/10.3103/S0747923919010067

    Article  Google Scholar 

  9. Di Giacomo, D., Bondár, I., Storchak, D.A., Engdahl, E.R., Bormann, P., and Harris, J., ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), III. Re-computed M S and m b, proxy M W, final magnitude composition and completeness assessment, Phys. Earth Planet. Inter., 2015, vol. 239, pp. 33–47.  https://doi.org/10.1016/j.pepi.2014.06.005

    Article  Google Scholar 

  10. Gutenberg, B. and Richter, C.F., Seismicity of the Earth, Geological Society of America, 1941.

  11. Gutenberg, B., Amplitudes of surface waves and magnitudes of shallow earthquakes, Bull. Seismol. Soc. Am., 1945, vol. 35, no. 1, pp. 3–12.  https://doi.org/10.1785/BSSA0350010003

    Article  Google Scholar 

  12. Heck, N.H., The role of earthquakes and the seismic method in submarine geology, Proc. Am. Philos. Soc., 1938, vol. 79, no. 1, pp. 97–108.

    Google Scholar 

  13. Heezen, B.C. and Ewing, M., The Mid-Oceanic Ridge and its extension through the Arctic Basin, Geology of the Arctic, Raasch, G.O., Ed., Toronto: Univ. of Toronto Press, 1961, pp. 622–642.  https://doi.org/10.3138/9781487584979-055

    Book  Google Scholar 

  14. Hodgson, E.A., The seismicity of the Arctic, J. R. Astron. Soc. Can., 1929, vol. 24, no. 5, pp. 47–49.

    Google Scholar 

  15. International Seismological Centre. http://www.isc.ac.uk/. Cited December 6. 2020.

  16. Kennett, B.L.N. and Engdahl, E.R., Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 1991, vol. 105, no. 2, pp. 429–465.  https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

    Article  Google Scholar 

  17. Kennett, B.L.N., Seismological Tables: ak135, Canberra: Australian Nat. Univ., 2005.

    Google Scholar 

  18. Kirnos, D.P., Kharin, D.A., and Shebalin, N.V., History of development of instrumental seismic observations in USSR, Zemletryaseniya v SSSR (Earthquakes in USSR), Moscow: Akad. Nauk SSSR, 1961, pp. 9–66.

  19. Lee, W.H.K., Meyers, H., and Shimazaki, K., Introduction to the symposium on historical seismograms and eathquakes, Symp. Historical Seismograms and Earthquakes, San Diego, Calif.: Academic Press, 1988, pp. 3–15.

    Google Scholar 

  20. Linden, N.A., On the map of seismicity of Arctic, Seismicheskie i glyatsiologicheskie issledovaniya v period MGG (Seismic and Glaciological Studies during the International Geophysical Year), Moscow: Akad. Nauk SSSR, 1959, vol. 2, pp. 7–17.

    Google Scholar 

  21. Malovichko, A.A., Morozov, A.N., Vaganova, N.V., Asming, V.E., Dyagilev, R.A., and Evtyugina, Z.A., The August 17, 1914 Bilimbaev earthquake: location based on instrumental data, Ross. Seismol. Zh., 2020, vol. 2, no. 1, pp. 40–47.  https://doi.org/10.35540/2686-7907.2020.1.04

    Article  Google Scholar 

  22. Michelini, A., De Simoni, B., Amato, A., and Boschi, E., Collecting, digitizing, and distributing historical seismological data, Eos, Trans. Am. Geophys. Union, 2011, vol. 86, no. 28, pp. 261–266.  https://doi.org/10.1029/2005EO280002

    Article  Google Scholar 

  23. Morozov, A.N., Vaganova, N.V., and Konechnaya, Y.V., The October 14, 1908 MW 6.6 earthquake in the Barents and Kara sea region of the Arctic: Relocation based on instrumental data, Polar Sci., 2019, vol. 20, no. 2, pp. 160–166.  https://doi.org/10.1016/j.polar.2019.05.001

    Article  Google Scholar 

  24. Morozov, A.N., Vaganova, N.V., Konechnaya, Y.V., and Asming, V.E., New data about seismicity and crustal velocity structure of the “continent-ocean” transition zone of the Barents-Kara region in the Arctic, J. Seismol., 2015, vol. 19, no. 1, pp. 219–230.  https://doi.org/10.1007/s10950-014-9462-z

    Article  Google Scholar 

  25. Morozov, A.N., Vaganova, N.V., Shakhova, E.V., Konechnaya, Y.V., Asming, V.E., Antonovskaya, G.N., and Evtyugina, Z.A., Seismicity of the Arctic in the early twentieth century: Relocation of the 1904–1920 earthquakes, Bull. Seismol. Soc. Am., 2019, vol. 109, no. 5, pp. 2000–2008.  https://doi.org/10.1785/0120190018

    Article  Google Scholar 

  26. Niemz, P. and Amorèse, D., Relocalizing a historical earthquake using recent methods: The 10 November 1935 earthquake near Montserrat, Lesser Antilles, Tectonophysics, 2016, vol. 66, pp. 166–179.  https://doi.org/10.1016/j.jsames.2015.12.010

    Book  Google Scholar 

  27. Nikonov, A.A. and Chepkunas, L.S., The Sysol earthquake of January 13, 1939 on Russian Plate: New Approach, Vopr. Inzh. Seismol., 2009, vol. 36, no. 4, pp. 25–41.

    Google Scholar 

  28. Novyi katalog sil’nykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g (New Catalog of Strong Earthquakes on the Soviet Territory from Ancient Times until 1975), Kondorskaya, N.V. and Shebalin, N.V., Eds., Moscow: Nauka, 1977.

    Google Scholar 

  29. Oldham, R.D., On the propagation of earthquake motion to great distances, Philos. Trans. R. Soc. London, Ser. A, 1900, vol. 194, nos. 252–261, pp. 135–174.  https://doi.org/10.1098/rsta.1900.0015

  30. Raiko, N.V. and Linden, N.A., On the November 20, 1933 earthquake in Baffin Bay and on the distribution of seismic hypocenters in Arctic, Trudy Seismicheskogo Inst. SSSR, 1935, no. 61, pp. 1–8.

  31. Richter, C.F., An instrumental earthquake magnitude scale, Bull. Seismol. Soc. Am., 1935, vol. 25, no. 1, pp. 1–32.https://doi.org/10.1785/BSSA0250010001

    Article  Google Scholar 

  32. Ringdal, F. and Kværna, T., A multi-channel processing approach to real time network detection, phase association, and threshold monitoring, Bull. Seismol. Soc. Am., 1989, vol. 79, no. 6, pp. 1927–1940.  https://doi.org/10.1785/BSSA0790061927

    Article  Google Scholar 

  33. Shide Circulars. British Association for the Advancement of Science, Circulars 1–27, The Seismological Committee of the British Association for the Advancement of Science (BAAS), 1900–1912.

  34. Storchak, D.A., Di Giacomo, D., Bondár, I., Engdahl, E.R., Harris, J., Lee, W.H., Villaseñor, A., and Bormann, P., Seismol. Res. Lett., 2013, vol. 84, no. 5, pp. 810–815.  https://doi.org/10.1785/0220130034

    Article  Google Scholar 

  35. Storchak, D.A., Di., Giacomo, D., Engdahl, E.R., Harris, J., Bondár, I., Lee, W.H., Bormann, P., and Villaseñor, A., The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction, Phys. Earth Planet. Inter., 2015, vol. 239, pp. 48–63.  https://doi.org/10.1016/j.pepi.2014.06.009

    Article  Google Scholar 

  36. Sykes, L.R., The seismicity of the Arctic, Bull. Seismol. Soc. Am., 1965, vol. 55, no. 2, pp. 501–518.  https://doi.org/10.1785/BSSA0550020501

    Article  Google Scholar 

  37. Tams, E., Die seismischen Verhältnisse des europäischen Nordmeeres und seiner Umrandung, Mitt. Geogr. Ges., 1921, vol. 33, pp. 37–67.

    Google Scholar 

  38. Tams, E., Die seismischen Verhältnisse des europäischen Nordmeeres, Zentralbl. Mineral., Geol. Palaentol., 1922, no. 13, pp. 385–397.

  39. Tams, E., Erdbeben im Gebiet der Nordenskiöld See, Gerlands Beitr. Geophys., 1927, vol. 17, pp. 325–330.

    Google Scholar 

  40. Vanek, I., Zatopek, A., Karnik, V., Kondorskaya, N.V., Riznichenko, Yu.V., Savarenskii, E.F., Solov’ev, S.L., and Shebalin, N.V., Standardisation of magnitude scales, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1962, no. 2, pp. 108–111.

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. A.A. Nikonov (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences) whose advice, recommendations, and questions motivated us to conduct the present study.

Funding

The research was supported by the research projects for the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (no. AAAA-A19-119072590031-6), and Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences (no. FUUW-2022-0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Morozov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Astafiev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.N., Vaganova, N.V., Asming, V.E. et al. Relocation of Early Instrumental Earthquakes in the Arctic. Seism. Instr. 58, 32–44 (2022). https://doi.org/10.3103/S0747923922010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922010066

Keywords:

Navigation