Skip to main content
Log in

Heterogeneities of the Short-Period S-Wave Attenuation Field in the Lithosphere of the Himalayas, Indian Plate, and Southern Tibet and Their Relation to Seismicity

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The characteristics of the attenuation field in the lithosphere of South Asia are considered. Records of local earthquakes, obtained at the NIL station, and ratios of maximum amplitudes of Sn and Pn waves within the distance range of ~300–1900 km are analyzed. About 200 earthquake seismograms were processed in aggregate. It is established that generally lower attenuation is observed in the uppermost mantle beneath the Indian Plate (for the meridional profile directed toward the source zone of large Bhuj earthquake of January 26, 2001, with MW = 7.7). Considerably higher attenuation corresponds to the regions of Himalayas and, especially, Southern Tibet. It is shown that increased attenuation is observed in the source zone of the recent large Nepal earthquake of April 25, 2015 (MW = 7.8). Additionally, lower and intermediate attenuation is reported within the source zones of large and great interplate events (MW = 7.0–8.1), occurred in the Himalayan region in 1897–1930. Conversely, substantially decreased attenuation corresponds to the source zone of the Bhuj intraplate earthquake. These new results are consistent with earlier data, which indicate concentration of mantle fluids below source zones prior to large interplate earthquakes, as well as ascent of fluids into the crust after these events. High attenuation zones are distinguished in the regions of West Himalayas and central Pakistan, where large earthquakes have not occurred for a long time. It is suggested that processes related to the preparation of large seismic events can occur there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Aptikaeva, O.I., The attenuation field in the focal zone of the 2003 Altai earthquake, using the coda envelopes of the aftershocks, Seism. Instrum., 2015, vol. 51, no. 4, pp. 367–374. https://doi.org/10.3103/S0747923915040027

    Article  Google Scholar 

  2. Aptikaeva, O.I., The attenuation field of transverse waves and seismicity in the seismogenic zone of the Tuva earthquakes 2011–2012, Tr. Inst. Geologii Dagestan. Nauch. Tsentra Ross. Akad. Nauk, no. 66, pp. 149–153.

  3. Aptikaeva, O.I., Seismic activity and structures of the crust and upper mantle in the areas of source zones of the largest earthquakes in the Altai–Sayan region, Seism. Instrum., 2018, vol. 54, no. 2, pp. 184–198. https://doi.org/10.3103/S0747923918020020

    Article  Google Scholar 

  4. Aptikaeva, O.I., Detailed structure of attenuation field in the Western Tien Shan based on short-period coda waves, Seism. Instrum., 2019a, vol. 55, no. 2, pp. 185–195. https://doi.org/10.3103/S0747923919020038

    Article  Google Scholar 

  5. Aptikaeva, O.I., Features of the 1976 and 2011 Van earthquakes, swarm seismicity and s-wave attenuation field, Geol. Geofiz. Yuga Ross., 2019b, vol. 9, no. 3, pp. 105–118.

    Google Scholar 

  6. Aptikaeva, O.I., S-wave attenuation field and seismotectonics of Eastern Anatolia, Seism. Instrum., 2020, vol. 56, no. 1, pp. 106–120. https://doi.org/10.3103/S074792392001003X

    Article  Google Scholar 

  7. Aptikaeva, O.I., Some results of studying the S-wave attenuation field in the Caucasus using the short-period coda method, Seism. Instrum., 2021, vol. 57, no. 1, pp. 97–114. https://doi.org/10.3103/S0747923921010047

    Article  Google Scholar 

  8. Aptikaeva, O.I. and Aptikaev, S.F., Attenuation of seismic waves from moderate earthquakes of the Vrancea zone, Seism. Instrum., 2017, vol. 53, no. 2, pp. 111–123. https://doi.org/10.3103/S0747923917020037

    Article  Google Scholar 

  9. Aptikaeva, O.I. and Aptikaev, S.F., S-waves attenuation field in the near region of NPP sites according to seismic monitoring data (on the example of the Akkuyu NPP, Turkey), Geofiz. Issled., 2019, vol. 20, no. 2, pp. 56–72. https://doi.org/10.21455/gr2019.2-5

    Article  Google Scholar 

  10. Furumura, T. and Kennett, B.L.N., Variations in regional phase propagation in the region around Japan, Bull. Seismol. Soc. Am., 2001, vol. 91, no. 4, pp. 667–682. https://doi.org/10.1785/0120000270

    Article  Google Scholar 

  11. Gök, R., Türkelli, N., Sandvol, E., Seber, D., and Barazangi, M., Regional wave propagation in Turkey and surrounding regions, Geophys. Rev. Lett., 2000, vol. 27, no. 3, pp. 429–432. https://doi.org/10.1029/1999GL008375

    Article  Google Scholar 

  12. Husen, S. and Kissling, E., Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile, Geology, 2001, vol. 29, no. 9, pp. 847–850. https://doi.org/10.1130/0091-7613(2001)029<0847:PFFATL>2.0.CO;2

    Article  Google Scholar 

  13. Kaazik, P.B., Kopnichev, Yu.F., Nersesov, I.L., and Rakhmatullin, M.Kh., Short-period seismic fields fine structure analysis on station group, Dokl. Akad. Nauk SSSR, 1989, vol. 308, no. 5, pp. 1090–1094.

    Google Scholar 

  14. Kennett, B.L.N. and Furumura, T., Regional phases in continental and oceanic environments, Geophys. J. Int., 2001, vol. 146, no. 2, pp. 562–568. https://doi.org/10.1046/j.1365-246x.2001.01467.x

    Article  Google Scholar 

  15. Kopnichev, Yu.F., Korotkoperiodnye seismicheskie volnovye polya (Short-Period Seismic Wave Fields), Moscow: Nauka, 1985.

  16. Kopnichev, Yu.F. and Arakelyan, A.R., On the nature of short-period seismic fields at distances up to 3000 km, Vulkanol. Seismol., 1988, no. 4, pp. 77–92.

  17. Kopnichev, Yu.F., Gordienko, D.D., and Sokolova, I.N., Space-time variations of the shear wave attenuation field in the upper mantle of seismic and low seismicity areas, J. Volcan. Seismol., 2009, vol. 3, no. 1, pp. 44–58. https://doi.org/10.1134/S0742046309010059

    Article  Google Scholar 

  18. Kopnichev, Yu.F. and Sokolova, I.N., Space-time variations in the attenuation field structure of S waves at the Semipalatinsk test site, Izv., Phys. Solid Earth, 2001, vol. 37, no. 11, pp. 928–941.

    Google Scholar 

  19. Kopnichev, Yu.F. and Sokolova, I.N., Spatiotemporal variations of the S wave attenuation field in the source zones of large earthquakes in the Tien Shan, Izv., Phys. Solid Earth, 2003, vol. 39, no. 7, pp. 568–579.

    Google Scholar 

  20. Kopnichev, Yu.F. and Sokolova, I.N., Mantle fluids ascent in the regions of large earthquake sources and large deep fault zones: Geochemical evidences, Vestn. Nauchn. Yadernyi Tsentr Resp. Kaz., 2005, no. 2, pp. 147–155.

  21. Kopnichev, Yu.F. and Sokolova, I.N., Heterogeneities in the field of short period seismic wave attenuation in the lithosphere of central Tien Shan, J. Volcanol. Seismol., 2007, vol. 1, no. 5, pp. 333–348. https://doi.org/10.1134/S0742046307050065

    Article  Google Scholar 

  22. Kopnichev, Yu.F. and Sokolova, I.N., Characteristics of the seismicity and absorption field of S-waves in the source region of the Sumatra earthquake of December 26, 2004, Dokl. Earth Sci., 2008, vol. 423, no. 1, pp. 1257–1261. https://doi.org/10.1134/S1028334X08080163

    Article  Google Scholar 

  23. Kopnichev, Yu.F. and Sokolova, I.N., Heterogeneities of the field of short-period shear wave attenuation in the lithosphere of Central Asia and their relationship with seismicity, Dokl. Earth Sci., 2011, vol. 437, no. 1, pp. 363–367. https://doi.org/10.1134/S1028334X11030044

    Article  Google Scholar 

  24. Kopnichev, Yu.F., Sokolova I.N., Heterogeneities of the shear wave attenuation field in the lithosphere of East Tien Shan and their relationship with seismicity, Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 292–295.  https://doi.org/10.1134/S1028334X12020249

    Article  Google Scholar 

  25. Kopnichev, Yu.F. and Sokolova, I.N., Annular seismicity structures generated in the continental regions before large earthquakes with various mechanisms of foci, Geofiz. Issled., 2013, vol. 14, no. 1, pp. 5–15.

    Google Scholar 

  26. Kopnichev, Yu.F. and Sokolova, I.N., Variations in short-period shear-wave attenuation in the Baikal Rift Zone and their relationship to seismicity, J. Volcanol. Seismol., 2014, vol. 8, no. 5, pp. 307–313.  https://doi.org/10.1134/S0742046314050054

    Article  Google Scholar 

  27. Kopnichev, Yu.F. and Sokolova, I.N., Anomalies of high S-wave attenuation and ring-shaped seismicity structures in the Altay lithosphere: Possible preparation for large earthquakes, Geofiz. Protsessy Biosfera, 2016, vol. 15, no. 1, pp. 57–72.

    Google Scholar 

  28. Kopnichev, Yu.F. and Sokolova, I.N., Temporal variations of S-wave attenuation field in the region of Lop Nor nuclear test site, Nauka Tekhnol. Razrab., 2018a, vol. 97, no. 3, pp. 25–32. https://doi.org/10.21455/std2018.3-3

    Article  Google Scholar 

  29. Kopnichev, Yu.F. and Sokolova, I.N., Space-time variations in the attenuation field of short period shear waves in the Hindu Kush Area, J. Volcanol. Seismol., 2018b, vol. 12, no. 6, pp. 424–433.  https://doi.org/10.1134/S0742046318060040

    Article  Google Scholar 

  30. Kopnichev, Yu.F. and Sokolova, I.N., Temporal variations of the S-wave attenuation field in the area of the Lop Nor nuclear test site, Seism. Instrum. 2018c, vol. 54, no. 6, pp. 691–694. https://doi.org/10.3103/S0747923918060063

    Article  Google Scholar 

  31. Kopnichev, Yu.F. and Sokolova, I.N., Characteristics of short-period S-wave attenuation field in the rupture zone of the Great Tohoku earthquake of 11/03/2011 (MW 9.0), Geofiz. Protsessy Biosfera, 2019a, vol. 18, no. 2, pp. 16–27. https://doi.org/10.21455/GPB2019.2-2

    Article  Google Scholar 

  32. Kopnichev, Yu.F. and Sokolova, I.N., Heterogeneities of short-period S-wave attenuation field in the Caucasus lithosphere and its relation to seismicity, Geofiz. Protsessy Biosfera, 2019b, vol. 18, no. 3, pp. 67–76.  https://doi.org/10.21455/GPB2019.3-4

    Article  Google Scholar 

  33. Kopnichev, Yu.F. and Sokolova, I.N., Mapping S-wave attenuation field in the region of the North Tien Shan using seismogram coda for local earthquakes and quarry blasts, Geofiz. Protsessy Biosfera, 2019c, vol. 18, no. 4, pp. 241–252. https://doi.org/10.21455/GPB2019.4-20

    Article  Google Scholar 

  34. Kopnichev, Yu.F. and Sokolova, I.N., The characteristics of the short-period S-wave attenuation field in the lithosphere of Turkmenistan and Northeastern Iran and their relation to seismicity, Seism. Instrum., 2021, vol. 57, no. 1, pp. 9–16. https://doi.org/10.3103/S0747923921010060

    Article  Google Scholar 

  35. Kopnichev, Yu.F., Sokolova, I.N., and Sokolov, K.N., Spatio-temporal variations in the structure of the attenuation field of the S-wave in the region of Nevada nuclear test site, Izv., Phys. Solid Earth, 2013, vol. 49, no. 6, pp. 786–795. https://doi.org/10.1134/S1069351313060086

    Article  Google Scholar 

  36. Kumar, P., Yuan, X., Kumar, M.R., Kind, R., Li, X., and Chadha, R.K, The rapid drift of the Indian tectonic plate, Nature, 2007, vol. 449, pp. 894–897. https://doi.org/10.1038/nature06214

    Article  Google Scholar 

  37. Letnikov, F.A., Sinergetika geologicheskikh system (Synergetics of Geological Systems), Novosibirsk: Nauka, 1992.

  38. McNamara, D.E., Owens, T.J., and Walter, W.R., Observations of regional phase propagation across the Tibetan Plateau, J. Geophys. Res.: Solid Earth, 1995, vol. 100, no. B11, pp. 22 215–22 229. https://doi.org/10.1029/95JB01863

    Article  Google Scholar 

  39. Molnar, P. and Oliver, J., Lateral variations of attenuation in the upper mantle and discontinuities in the lithosphere, J. Geophys. Res., 1969, vol. 74, no. 10, pp. 2648–2682. https://doi.org/10.1029/JB074i010p02648

    Article  Google Scholar 

  40. Monsalve, G., Sheehan, A., Schulte-Pelkum, V., Rajaure, S., Pandey, M.R., and Wu, F., Seismicity and one-dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle, J. Geophys. Res., 2006, vol. 111, no. B10, p. B10301.

    Article  Google Scholar 

  41. Ni, J. and Barazangi, M., High-frequency seismic wave propagation beneath the Indian shield, Himalayan Arc, Tibetan Plateau and surrounding regions: high uppermost mantle velocities and efficient Sn propagation beneath Tibet, Geophys. J. Int., 1983, vol. 72, no. 3, pp. 665–689. https://doi.org/10.1111/j.1365-246X.1983.tb02826.x

    Article  Google Scholar 

  42. Ogawa, R. and Heki, K., Slow postseismic recovery of geoid depression formed by the 2004 Sumatra-Andaman Earthquake by mantle water diffusion, Geophys. Res. Lett., 2007, vol. 34, no. 6, p. L06313.  https://doi.org/10.1029/2007GL029340

    Article  Google Scholar 

  43. Paul, J., Bürgmann, R., Gaur, V.K., Bilham, R., Larson, K.M., Ananda, M.B., Jade, S., Mukal, M., Anupama, T.S., Satyal, G., and Kumar, D., The motion and active deformation of India, Geophys. Res. Lett., 2001, vol. 28, no. 4, pp. 647–650. https://doi.org/10.1029/2000GL011832

    Article  Google Scholar 

  44. Rapine, R.R., Ni, J.F., and Hearn, T.M., Regional wave propagation in China and its surrounding regions, Bull. Seismol. Soc. Am., 1997, vol. 87, no. 6, pp. 1622–1636.

    Google Scholar 

  45. Storchak, D., Schweitzer, J., and Bormann, P., The IASPEI standard seismic phase list, Seismol. Res. Lett., 2003, vol. 74, no. 6, pp. 761–772. https://doi.org/10.1785/gssrl.74.6.761

    Article  Google Scholar 

  46. Taylor, M. and Yin, A., Active structures of the Himalayan-Tibetan orogeny and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere, 2009, vol. 5, no. 3, pp. 199–214. https://doi.org/10.1130/GES00217.1

    Article  Google Scholar 

  47. Van’yan, L.L. and Khaindman, R.D., On the origin of electrical conductivity in the consolidated crust, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 268–284.

    Google Scholar 

  48. Yamasaki, T. and Seno, T., Double seismic zone and dehydration embrittlement of the subducting slab, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B4, p. 2212. https://doi.org/10.1029/2002JB001918

    Article  Google Scholar 

  49. Zemnaya kora i verkhnyaya mantiya Tyan’-Shanya v svyazi s geodinamikoi i seismichnost’yu (Earth’s Crust and Upper Mantle of Tien Shan in Relation with Geodynamics and Seismicity), Bakirov, A.B., Ed., Bishkek: Ilim, 2006.

    Google Scholar 

  50. Zhao, C., Kennett, B.L.N., and Furumura, T., Contrasts in regional seismic wave propagation to station WMQ in central Asia, Geophys. J. Int., 2003, vol. 155, no. 1, pp. 44–56. https://doi.org/10.1046/j.1365-246X.2003.02000.x

    Article  Google Scholar 

Download references

Funding

The study was carried out under the State Contract for the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sokolova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by N. Astafiev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopnichev, Y.F., Sokolova, I.N. Heterogeneities of the Short-Period S-Wave Attenuation Field in the Lithosphere of the Himalayas, Indian Plate, and Southern Tibet and Their Relation to Seismicity. Seism. Instr. 57, 625–636 (2021). https://doi.org/10.3103/S0747923921060049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921060049

Keywords:

Navigation