Skip to main content
Log in

Seasonal Periodicity and noise Discrimination of Microearthquakes at the Garm Test Area

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

We studied the time series of the total number of weakest earthquakes (microearthquakes) with magnitudes M ≤ 2 recorded by 15 seismic stations of the Garm test area in 1975–1985, as well as the microseismic noise level at different frequencies of about 0.005–50 Hz recorded by the Garm station of the IRIS observation network for the periods 2006–2009 and 2013–2019. The main goal of the research was to find a correspondence and, if possible, cause-and-effect relationships between the quasiperiodic components present in both types of time series. Seismic events recorded by less than four stations and not included in the main earthquake catalog due to the impossibility of reliable determination of their hypocentral parameters were used as microearthquakes. At each station, only the number of such events per day was recorded. To identify stable periodicities, all series were studied using spectral and periodogram analysis methods, adapted to work with nonstationary signals. The initial data series were analyzed, as well as their regularized variants (logarithms and ranks of the number of events). Regularization made it possible to reduce the contribution of nonstationary effects (random bursts of activity, increase in the number of microearthquakes during periods of aftershock series, etc.) and ensured robustness of the results. The analysis revealed that of all possible rhythms common for the two types of time series, only the seasonal one is significant. The seasonal rhythm of microseismic noise at different frequency channels differs in phase and amplitude. High-frequency noise (channels of the IRIS system with a center frequency from 1 to 47 Hz), falling in the frequency range of the measuring and recording channels of the seismic stations of the Garm test area, is in antiphase with the seasonal variation in the number of recorded microearthquakes at all stations, with some specificity for individual stations. The antiphase change in the number of recorded microearthquakes and the level of microseismic noise in the recording band of the seismic stations suggests that the reason for these changes is the noise discrimination of microearthquakes when they are identified on seismograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Loktev, D.N., and Spivak, A.A., The effect of baric disturbances in the atmosphere on microseismic processes in the crust, Izv., Phys. Solid Earth, 2008, vol. 44, pp. 510–517.

    Article  Google Scholar 

  2. Anthony, R.E., Ringler, A.T., Wilson, D.C., Bahavar, M., and Koper, K.D., How processing methodologies can distort and bias power spectral density estimates of seismic background noise, Seismol. Res. Lett., 2020, vol. 91, pp. 1694–1706. https://doi.org/10.1785/0220190212

    Article  Google Scholar 

  3. Atef, A.H., Liu, K.H., and Gao, S.S., Apparent weekly and diurnal earthquake periodicities in the Western United States, Bull. Seismol. Soc. Am., 2009, vol. 99, no. 4, pp. 2273–2279. https://doi.org/10.1785/0120080217

    Article  Google Scholar 

  4. Avtomatizirovannaya obrabotka dannykh na Garmskom poligone (Automated Data Processing at the Garm Test Site), Sidorin, A.Ya., Ed., Moscow: Inst. Fiz. Zemli Akad. Nauk SSSR, 1991.

    Google Scholar 

  5. Beauduin, R. and Montagner, J.-P., Time evolution of broadband seismic noise during the French pilot experiment OFM/SISOBS, Geophys. Res. Lett., 1996, vol. 23, no. 21, pp. 2995–2998. https://doi.org/10.1029/96GL02880

    Article  Google Scholar 

  6. Beauduin, R., Lognonné, P., Montagner, J.P., Cacho, S., Karczewski, J.F., and Morand, M., The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station, Bull. Seismol. Soc. Am., 1996, vol. 86, no. 6, pp. 1760–1769.

    Google Scholar 

  7. Belyakov, A.S., Zhuravlev, V.I., and Lukk, A.A., Diurnal periodicity of weak earthquakes and high-frequency underground noise in Kamchatka, Izv., Phys. Solid Earth, 2011, vol. 47, pp. 186–206.

    Article  Google Scholar 

  8. Bormann, P., Conversion and comparability of data presentations on seismic background noise, J. Seismol., 1998, vol. 2, no. 1, pp. 37–45. https://doi.org/10.1023/A:1009780205669

    Article  Google Scholar 

  9. Bormann, P., Wylegalla, K., Strauch, W., and Baumbach, M., Potsdam seismological station network: Processing facilities, noise conditions, detection threshold and localization accuracy, Phys. Earth Planet. Int., 1992, vol. 69, nos. 3–4, pp. 311–321. https://doi.org/10.1016/0031-9201(92)90151-K

    Article  Google Scholar 

  10. Casey, R., Templeton, M.E., Sharer, G., Keyson, L., Weertman, B.R., and Ahern, T., Assuring the quality of IRIS data with MUSTANG, Seismol. Res. Lett., 2018, vol. 89, no. 2A, pp. 630–639. https://doi.org/10.1785/0220170191

    Article  Google Scholar 

  11. Chang, W.-Y., Chen, K.-P., and Tsai, Y.-B., Simultaneous assessment of the median annual seismicity rates and their dispersions for Taiwan earthquakes in different depth ranges, J. Asian Earth Sci., 2017, vol. 135, pp. 136–154. https://doi.org/10.1016/j.jseaes.2016.12.027

    Article  Google Scholar 

  12. Clements, T. and Denolle, M.A., SeisNoise.jl: Ambient seismic noise cross correlation on the CPU and GPU in Julia, Seismol. Res. Lett., 2021, vol. 92, no. 1, pp. 517–527. https://doi.org/10.1785/0220200192

    Article  Google Scholar 

  13. Descherevskaya, E.V. and Sidorin, A.Y., Spatial and temporal features in diurnal distributions of strong earthquakes at the Garm research area, Seism. Instrum., 2019, vol. 55, pp. 160–171. https://doi.org/10.3103/S0747923919020063

    Article  Google Scholar 

  14. Descherevsky, A.V., Lukk, A.A., Sidorin, A.Ya., Vstovsky, G.V., and Timashev, S.F., Flicker-noise spectroscopy in earthquake prediction research, Nat. Hazards Earth Syst. Sci., 2003, vol. 3, nos. 3–4, pp. 159–164. https://doi.org/10.5194/nhess-3-159-2003

    Article  Google Scholar 

  15. Deshcherevskaya, E.V. and Sidorin, A.Ya., Features of the seasonal periodicity of earthquakes of the Garm test site with different energy and spatial characteristics, Seism. Prib., 2004a, no. 40, pp. 45–56.

  16. Deshcherevskaya, E.V. and Sidorin, A.Ya., Manifestation of periods of Madden-Julian oscillations in the vibrational structure of seismicity of the Garm test site, in Issledovaniya v oblasti geofiziki (Research in Geophysics), Moscow: Ob’’ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 2004b, pp. 372–380.

  17. Deshcherevskaya, E.V. and Sidorin, A.Ya., Diurnal periodicity in Garm polygon Earth tremor, Seism. Instrum., 2004c, vol. 40, pp. 41–51.

  18. Deshcherevskaya, E.V. and Sidorin, A.Ya., The reason for the seasonal periodicity of earthquakes according to observations at the Garm test site, in Issledovaniya v oblasti geofiziki (Research in Geophysics), Moscow: Ob’’ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 2004d, pp. 123–130.

  19. Deshcherevskaya, E.V. and Sidorin, A.Ya., False annual periodicity of earthquakes caused by seasonal noise variability, Dokl. Earth Sci., 2005a, vol. 401, no. 2, pp. 244–248.

  20. Deshcherevskaya, E.V. and Sidorin, A.Ya., Intraseasonal seismicity variations in the Garm test area and their relation with atmospheric processes, Dokl. Earth Sci., 2005b, vol. 401, no. 2, pp. 285–287.

  21. Deshcherevskaya, E.V. and Sidorin, A.Ya., Diurnal periodicity of earthquakes in the Garm test area, Dokl. Earth Sci., 2005c, vol. 402, no. 4, pp. 610–613.

  22. Deshcherevskii, A.V. and Lukk, A.A., Identification of regular components in time realizations of geophysical parameters by decomposition into inharmonic components, in Izuchenie prirody variatsii geofizicheskikh polei (Research on the Nature of Variation in Geophysical Fields), Moscow: Ob’’ed. Inst. Fiz. Zemli Ross. Akad. Nauk., 1994, pp. 18–36.

  23. Deshcherevskii, A.V. and Lukk, A.A., Identification of regular components in temporal variations of geophysical parameters by decomposition into nonharmonic components, Vulkanol. Seismol., 2002, no. 5, pp. 65–78.

  24. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems of the Methodology for Assessing the Average Seasonal Functions for Geophysical Data), Moscow: Ob’’ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 1999.

  25. Deshcherevskii, A.V. and Sidorin, A.Ya., Comparison of periodograms of superimposed epochs and Fourier spectra of experimental series, Seism. Instrum., 2012a, vol. 48, pp. 235–255. https://doi.org/10.3103/S0747923912030048

    Article  Google Scholar 

  26. Deshcherevskii, A.V. and Sidorin, A.Ya., Periodograms of superimposed epochs in search for hidden rhythms in experimental data time series, Seism. Instrum., 2012b, vol. 48, pp. 57–74. https://doi.org/10.3103/S0747923912010033

    Article  Google Scholar 

  27. Desherevskii, A.V., Sidorin, A.Y. Estimating the number of blasts in the Dushanbe-Vakhsh earthquake catalog. Seism. Instrum., 2017. 53, 356–369. https://doi.org/10.3103/S074792391704003X

  28. Deshcherevskii, A.V. and Zhuravlev, V.I., Statisticheskie svoistva i spektral’no-korrelyatsionnyi analiz aktivnosti mikrozemletryasenii na Garmskom poligone (Statistical Properties and Spectral-Correlation Analysis of the Activity of Microearthquakes at the Garm Test Site), Moscow: Ob’’ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 2000.

  29. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., The ABD software package: A universal tool for analyzing the data of regime observations, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 4, pp. 35–48. https://doi.org/10.21455/std2016.4-6

    Article  Google Scholar 

  30. Deshcherevskii, A.V., Sidorin, A.Ya., and Fattakhov, E.A., Complex methodology for describing and filtering exogenous effects in monitoring data, taking into account the type of observations and defects in experimental data, Nauka Tekhnol. Razrab., 2019, vol. 98, no. 2, pp. 25–60. https://doi.org/10.21455/std2019.2-2

    Article  Google Scholar 

  31. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time Series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 53, pp. 46–59. https://doi.org/10.3103/S0747923917010030

    Article  Google Scholar 

  32. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, pp. 203–223. https://doi.org/10.3103/S0747923917030021

    Article  Google Scholar 

  33. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Problems in analyzing time series with gaps and their solution with the WinABD software package, Izv., Atmos. Oceanic Phys., 2017c, vol. 53, pp. 659–678. https://doi.org/10.1134/S0001433817070027

    Article  Google Scholar 

  34. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Analysis of rhythms in experimental signals, Izv., Atmos. Oceanic Phys., 2017d, vol. 53, pp. 847–858. https://doi.org/10.1134/S0001433817080035

    Article  Google Scholar 

  35. Dobrynina, A.A. and German, V.I., Discrimination of weak earthquakes and explosions, www.esa-conference.ru. 2017. https://doi.org/10.5281/zenodo.2590766

  36. Frez, J., González, J.J., Acosta, J.G., Nava, F.A., Méndez, I., Carlos, J., García-Arthur, R.E., and Alvarez, M., A detailed microseismicity study and current stress regime in the Peninsular Ranges of Northern Baja California, Mexico: The Ojos Negros Region, Bull. Seismol. Soc. Am., 2000, vol. 90, no. 5, pp. 1133–1142. https://doi.org/10.1785/0119990164

    Article  Google Scholar 

  37. Garmskii geofizicheskii polygon (The Garm Geophysical Test Site), Sidorin, A.Ya., Ed., Moscow: Inst. Fiz. Zemli Akad. Nauk SSSR, 1990.

    Google Scholar 

  38. Gavrilov, V.A., Physical causes of diurnal variations in the geoacoustic emission level, Dokl. Earth Sci., 2007, vol. 414, pp. 638–641. https://doi.org/10.1134/S1028334X07040320

    Article  Google Scholar 

  39. Gavrilov, V.A., Desherevskii, A.V., Poltavtseva, E.V., and Sidorin, A.Ya., Technologies of preliminary data processing for multidisciplinary geophysical monitoring and a case study of their application in the Kamchatka geoacoustic observation system, Seism. Instrum., 2017, vol. 53, pp. 296–308. https://doi.org/10.3103/S0747923917040053

    Article  Google Scholar 

  40. Guidarelli, M., Klin, P., and Priolo, E., Migration-based near real-time detection and location of microearthquakes with parallel computing, Geophys. J. Int., 2020, vol. 221, no. 3, pp. 1941–1958. https://doi.org/10.1093/gji/ggaa111

    Article  Google Scholar 

  41. Hillers, G., Husen, S., Obermann, A., Planès, T., Larose, E., and Campillo, M., Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation, Geophysics, 2015, vol. 80, no. 4, pp. 1JA–Z63. https://doi.org/10.1190/geo2014-0455.1

  42. Hofstetter, R., Malin, P., and Ben-Avraham, Z., Seismic observations of microearthquakes from the Masada Deep Borehole, Seismol. Res. Lett., 2020, vol. 91, no. 4, pp. 2298–2309. https://doi.org/10.1785/0220190391

    Article  Google Scholar 

  43. Hutko, A.R., Bahavar, M., Trabant, C., Weekly, R.T., van Fossen, M., and Ahern, T., Data products at the IRIS-DMC: Growth and usage, Seismol. Res. Lett., 2017, vol. 88, no. 3. https://doi.org/10.1785/0220160190

  44. Karimov, F.Kh., Salomov, N.G., Manskii, V.N., Khuzhaev, Kh.Sh., and Okilshoev, Kh.S., Annual variations of several geophysical fields on the territory of Tajikistan, Ross. Seismol. Zh., 2019, vol. 1, no. 1, pp. 75–83. https://doi.org/10.35540/2686-7907.2019.1.07

    Article  Google Scholar 

  45. Kiszely, M.M., Statistical analysis of earthquakes and quarry blasts in the Carpathian Basin – new problems and facilities, Carpathian J. Earth Environ. Sci., 2010, vol. 5, no. 2, pp. 101–110.

    Google Scholar 

  46. Koper, K.D. and Hawley, V.L., Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the Central United States, Earthq. Sci., 2010, vol. 23, pp. 439–447. https://doi.org/10.1007/s11589-010-0743-5

    Article  Google Scholar 

  47. Li, D., Liu, X., Li, X., and Liu, Y., The impact of microearthquakes induced by reservoir water level rise on stability of rock slope, Shock Vib., 2016, artic. no. 7583108. https://doi.org/10.1155/2016/7583108

  48. Lukk, A.A. and Yunga, S.L., Seasonal periodicity in the orientation of focal mechanisms and the number of weak earthquakes in the Garm region, Dokl. Akad. Nauk SSSR, 1979, vol. 246, no. 1, pp. 44–47.

    Google Scholar 

  49. Malin, P.E., Bohnhoff, M., Blümle, F., Dresen, G., and Martínez-Garzón, P., Microearthquakes preceding a M4.2 earthquake offshore Istanbul, Sci. Rep., 2018, vol. 8, 16176. https://doi.org/10.1038/s41598-018-34563-9

    Article  Google Scholar 

  50. Marfurt, K.J. and Bertrand, D., Mapping prestack depth-migrated coherent signal and noise events back to the original time gathers using Fermat’s principle, Geophysics, 1999, vol. 64, no. 3, pp. 934–941. https://doi.org/10.1190/1.1444601

    Article  Google Scholar 

  51. Maurya, S., Taira, T., and Romanowicz, B., Location of seismic “hum” sources following storms in the North Pacific Ocean, Geochem. Geophys. Geosyst., 2019, vol. 20, pp. 1454–1467. https://doi.org/10.1029/2018GC008112

    Article  Google Scholar 

  52. McNamara, D.E. and Boaz, R.I., Seismic Noise Analysis System, Power Spectral Density Probability Density Function: Stand-Alone Software Package, USGS Open File Report No. 1438, 2005. https://pubs.usgs.gov/of/2005/1438/.

  53. McNamara, D.E. and Buland, R.P., Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am., 2004, vol. 94, pp. 1517–1527. https://doi.org/10.1785/012003001

    Article  Google Scholar 

  54. Miyazawa, M., Snieder, R., and Venkataraman, A., Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada, Geophysics, 2008, vol. 73, no. 4, pp. D35–D40. https://doi.org/10.1190/1.2937172

    Article  Google Scholar 

  55. Nishida, K., Earth’s background free oscillations, Ann. Rev. Earth Planet. Sci., 2013, vol. 41, no. 1, pp. 719–740. https://doi.org/10.1146/annurev-earth-050212-124020

    Article  Google Scholar 

  56. Nishida, K., Ambient seismic wave field, Proc. Jpn. Acad., Ser. B, 2017, vol. 93, pp. 423–448. https://doi.org/10.2183/pjab.93.026

    Article  Google Scholar 

  57. Rulev, B.G., Annual periodicity in the emission of microearthquakes and irregularity of the Earth’s rotation, in Zemletryaseniya i protsessy ikh podgotovki (Earthquakes and Processes of Their Preparation), Moscow: Nauka, 1991, pp. 127–138.

  58. Serebrennikov, M.G. and Pervozvanskii, A.A., Vyyavlenie skrytykh periodichnostei (Revealing Hidden Periodicities), Moscow: Nauka, 1965.

  59. Sidorin, A.Ya., Effects of the Sun on seismicity and seismic noise, Seism. Instrum., 2004, vol. 40, pp. 52–59.

  60. Sidorin, A.Ya., Midday effect in the time series of earthquakes and seismic noise, Dokl. Earth Sci., 2005, vol. 403, no. 5, pp. 771–776.

  61. Sidorin, A.Ya., Diurnal periodicity of earthquakes and its seasonal variations, Seism. Instrum., 2010, vol. 46, no. 3, pp. 293–305. https://doi.org/10.3103/S0747923910030114

  62. Sidorin, A.Y. Sidorin, A.Y., Comparison of the diurnal periodicity features of seismic noise, earthquakes, and electric power consumption, Seism. Instrum., 2011, vol. 47, no. 4, pp. 368–385. https://doi.org/10.3103/S0747923911040098

  63. Sidorin, A.Ya., On the causes of unordinary periodicity of earthquakes, Seism. Instrum., 2012, vol. 48, no. 2, pp. 196–207. https://doi.org/10.3103/S0747923912020090

  64. Sidorin, A.Ya., Differences in intraday phase diagrams of earthquake fluxes of different energies, Seism. Prib., 2013, vol. 49, no. 2, pp. 71–84.

    Google Scholar 

  65. Sidorin, A.Ya., Antiphase intradiurnal changes in the fluxes of strong and weak earthquakes as a manifestation of trigger effects in the seismic process, Geofiz. Protsessy Biosfera, 2015, vol. 14, no. 3, pp. 71–80.

    Google Scholar 

  66. Sinaga, R.P., Rosid, M.S., and Ramadhan, I., Delineation of the permeable zone using microearthquake data in the geothermal field R, IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 481, 012048.

  67. Sobolev, G.A., Low-frequency seismic noise before and after the Sumatra megaearthquake of December 26, 2004, Dokl. Earth Sci., 2019, vol. 485, pp. 395–400.

    Article  Google Scholar 

  68. Sobolev, G.A. and Zakrzhevskaya, N.A., Spatial and temporal structure of global low-frequency seismic noise, Izv., Phys. Solid Earth, 2019, vol. 55, pp. 529–547. https://doi.org/10.1134/S1069351319040098

    Article  Google Scholar 

  69. Tan, Y. and He, C., Improved methods for detection and arrival picking of microseismic events with low signal-to-noise ratios, Geophysics, 2016, vol. 81, no. 2, pp. 1MA–Z17. https://doi.org/10.1190/geo2015-0213.1

  70. Terebizh, V.Yu., Analiz vremennykh ryadov v astrofizike (Time Series Analysis in Astrophysics), Moscow: Nauka, 1992.

  71. Wu, W.-J., Su, C.-M., Wen, S., Li, Y.-H., Liao, Y.-C., Peng, H.-C., and Chen, C.-H., Microseismic monitoring and stress inversion in Northeast Taiwan, Seismol. Res. Lett., 2021, vol. 92, no. 3, pp. 1992–2003. https://doi.org/10.1785/0220200262

    Article  Google Scholar 

  72. Yaroshevich, M.I., Ingel’, L.Kh., and Lysenko, D.A., Seismic manifestations of atmospheric processes. Scientific review, Tekh. Nauki, 2016, no. 5, pp. 103–115.

  73. Zhuravlev, V.I., A method and results of analysis of the spatio-temporal field of seismic activity, Dokl. Akad. Nauk SSSR, 1980a, vol. 255, no. 5, pp. 1073–1075.

    Google Scholar 

  74. Zhuravlev, V.I., Spatial periodicity of seismic activity in the Garm region, Dokl. Akad. Nauk SSSR, 1980b, vol. 255, no. 1, pp. 72–74.

    Google Scholar 

  75. Zhuravlev, V.I., Investigation of periodicities in the data of IRIS infrasonic measurements, European Scientific Conference. IX Mezhdunarodnaya nauchno-prakticheskaya konferentsiya (European Scientific Conference. IX International Scientific and Practical Conference), Moscow, 2018, pp. 190–196.

  76. Zhuravlev, V.I., Study of weekly periodicities in earthquake catalogs and verification of this effect in noise according to the IRIS network, in World Science: Problems and Innovations, Penza: Nauka Prosveshchenie, 2019, vol. 1, pp. 298–307.

    Google Scholar 

  77. Zhuravlev, V.I. and Lukk, A.A., Midday activation of seismicity in Turkey and several other regions of the world, Geofiz. Issled., 2011, vol. 12, no. 4, pp. 31–57.

    Google Scholar 

  78. Zhuravlev, V.I. and Lukk, A.A., The pattern of diurnal periodicity of weak earthquakes in Iran, Izv., Phys. Solid Earth, 2012, vol. 48, pp. 61–77. https://doi.org/10.1134/S1069351311120111

    Article  Google Scholar 

  79. Zhuravlev, V.I. and Sidorin, A.Ya., General properties of the diurnal periodicity of earthquakes in some regions of the world, Geofiz. Issled., 2005a, no. 2, pp. 61–70.

  80. Zhuravlev, V.I. and Sidorin, A.Ya., Spectral studies of the diurnal periodicity of earthquakes in the Garm test site, Geofiz. Issled., 2005b, no. 1, pp. 48–57.

  81. Zhuravlev, V.I. and Sidorin, A.Ya., High Q-factor extrema of seismicity spectra in different regions of the world, Dokl. Earth Sci., 2006, vol. 407, pp. 344–348. https://doi.org/10.1134/S1028334X06020437

    Article  Google Scholar 

  82. Zhuravlev, V.I. and Sidorin, A.Ya., On the natural and anthropogenic mechanisms of diurnal periodicity on the example of the Himalayas, Geofiz. Protsessy Biosfera, 2015, vol. 14, no. 4, pp. 72–90.

    Google Scholar 

  83. Zhuravlev, V.I. and Sidorin, A.Y., Features of the seismic regime of the Mid-Atlantic Ridge, Seism. Instrum., 2019, vol. 55, pp. 377–387. https://doi.org/10.3103/S0747923919040133

    Article  Google Scholar 

  84. Zhuravlev, V. and Sidorin, A., A multiplicative model of the influence of seasonal variations on geophysical processes and the possibility of identifying and excluding such influence, XIII shkola-konferentsiya s mezhdunarodnym uchastiem “Problemy Geokosmosa” (XIII School-Conference with International Participation “Problems of the Geocosmos”), St. Petersburg, 2021.

  85. Zhuravlev, V.I., Lukk, A.A., Mirzoev, K.M., and Sycheva, N.A., Diurnal periodicity of weak earthquakes in Central Asia, Izv., Phys. Solid Earth, 2006, vol. 42, p. 890.

    Article  Google Scholar 

Download references

Funding

The study was carried out under project no. 0144-2019-0011 of the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Sidorin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Carpenter

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshcherevskii, A.V., Zhuravlev, V.I., Lukk, A.A. et al. Seasonal Periodicity and noise Discrimination of Microearthquakes at the Garm Test Area. Seism. Instr. 57, 552–571 (2021). https://doi.org/10.3103/S0747923921050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921050029

Keywords:

Navigation