Skip to main content
Log in

High-Degree Models of the Earth’s Gravity Field: History of Development, Assessment of Prospects and Resolution

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The article provides a generalized retrospective of creating global models of the Earth’s gravity field using satellite methods and modern global ultra-high-degree models; the most promising new solutions are considered. The main attention is given to reviewing techniques that affect the resolution of satellite methods, their development, and ways of further improvement. Modern combined models of the Earth’s gravity field, which also include altimetry data, instrumental surveys and global topography, are most interesting. The areas of possible practical application of global models and applied problems solved with their help depend on an understanding of the nature of model data and methods for their modification. At present, the resolution of models up to 5540 degrees of field expansion in spherical harmonics is achievable; however, high values of their degree and order do not always determine the reliability of the presented model data (not verified by direct measurements). Therefore, along with the highest-degree solutions, this article considers most of the known models of the Earth’s gravity field and their most characteristic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Andersen, O.B. and Knudsen, P., DNSC08 mean sea surface and mean dynamic topography models, J. Geophys. Res., 2009, vol. 114. https://doi.org/10.1029/2008JC005179

  2. Andersen, O.B. and Knudsen, P., The DTU17 Global Marine Gravity Field: First validation results, Fiducial Reference Measurements for Altimetry, 2019, pp. 83–87. https://doi.org/10.1007/1345_2019_65.

  3. Andersen, O., Knudsen, P., Kenyon, S., Holmes, S., and Factor, J.K., Evaluation of the Global Altimetric Marine Gravity Field DTU15: Using marine gravity and GOCE satellite gravity, International Symposium on Advancing Geodesy in a Changing World—Proceedings of the IAG Scientific Assembly, 2019, pp. 77–81. https://doi.org/10.1007/1345_2018_52.

  4. Barnes, D.E., 2019 Updates Earth Gravitational Model 2020, American Geophysical Union, Public Release Number 15-564, Fall Meeting 2019. Abstract G33B-0669, 2019.

  5. Barthelmes, F., Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM). Scientific Technical Report STR09/02, Potsdam: GeoForschungZentrum, 2013. https://doi.org/10.2312/GFZ.b103-0902-26

  6. Bekhterev, S.V., Drobyshev, M.N., Zheleznyak, L.K., Koneshov, V.N., Mikhaylov, P.S., and Solov’ev, V.N., Errors of Earth gravity models as depending on seafloor morphology, Izv., Phys. Solid Earth, 2019, vol. 55, pp. 806–810. https://doi.org/10.1134/S1069351319050021

    Article  Google Scholar 

  7. Bilker, M., Evaluation of the new global gravity field models from CHAMP and GRACE with GPS-levelling data in Fennoscandia, Conference: XXII Geofysiikan Päivät, Helsinki, 2005, pp. 21–26.

  8. Bouman, J., Bosch, W., and Sebera, J., Assessment of systematic errors in the computation of gravity gradients from satellite altimeter data, Mar. Geod., 2011, vol. 34, no. 2, pp. 85–107. https://doi.org/10.1080/01490419.2010.518498

    Article  Google Scholar 

  9. Brockmann, J.M., Zehentner, N., Hock, E., Pail, R., Loth, I., Mayer-Gurr, T., and Schuh, W.D., EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission, Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 8089–8099. https://doi.org/10.1002/2014l061904

    Article  Google Scholar 

  10. Buchar, E., Determination of some parameters of the gravity field of the Earth from rotation of the nodal line of artificial satellites, Bull. Géod., 1962, no. 65, pp. 269–271.

  11. Demianov, G., Sermyagin, R., and Tsybankov, I., Global Gravity Field Model GAO2012 [Data Set], Zenodo, 2012. https://doi.org/10.5281/zenodo.814573

  12. Dem’yanov G.V., Brovar, B.V., Kryukova, A.V., Mayorov, A.N., Nazarova, N.G., Pashina, N.N., and Taranov, V.A., Model of the Earth’s gravitational field TsNIIGAiK GAO-98, in Fizicheskaya geodeziya. Nauchno-tekhnicheskii sbornik po geodezii, aerokosmicheskim s"yemkam i kartografii (Physical Geodesy. Scientific and Technical Collection on Geodesy, Aerospace Imaging, and Cartography), 1999, pp. 88–116.

  13. Dem’yanov G.V., Mayorov, A.N., and Pobedinskii, G.G., GLONASS and geodesy, Vestn. GLONASS, 2012, no. 1, pp. 48–53.

  14. Ditmar, P., Kuznetsov, V., Van der Sluijs, A.A., Schrama, E., and Klees, R., DEOS_CHAMP-01C_70: A model of the Earth’s gravity field computed from accelerations of the CHAMP satellite, J. Geod., 2006, vol. 79, pp. 586–601.

    Article  Google Scholar 

  15. Fecher, T., Pail, R., Gruber, T., Schuh, W.-D., Kusche, J., Brockmann, J.M., Loth, I., Müller, S., Eicker, A., Schall, J., Mayer-Gürr, T., Kvas, A., Klinger, B., Rieser, D., Zehentner, N., Baur, O., Höck, E., Krauß, S., Jäggi, A., Meer, U., Prange, L., and Maier, A., GOCO05c: A new combined gravity field model based on full normal equations and regionally varying weighting, Surv. Geophys., 2017, vol. 38, pp. 571–590. https://doi.org/10.1007/s10712-016-9406-y

    Article  Google Scholar 

  16. Földváry, L., Švehla, D., Gerlach, C., Wermuth, M., Gruber, T., Rummel, R., Rothacher, M., Frommknecht, B., Peters, T., and Steigenberger, P., Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits, Berlin: Springer, 2005, pp. 13–18.

    Book  Google Scholar 

  17. Forste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.-M., Marty, J., C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R., EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, 2014. https://doi.org/10.5880/ICGEM.2015.1.

  18. Gaposchkin, E.M. and Lambeck, K., 1969 Smithsonian Standard Earth (II), Smithson. Astrophys. Observ., 1970, spec. rep. 315.

  19. Geodesy for the Layman. Report Documentation Page. DMA-Technical Report: DMA TR 80-003, St. Louis: Defense Mapping Agency Aerospace Center, 1983.

  20. Gilardoni, M., Reguzzoni, M., and Sampietro, D., GECO: A global gravity model by locally combining GOCE data and EGM2008, Stud. Geophys. Geod., 2016, vol. 60, pp. 228–247.

    Article  Google Scholar 

  21. Gorobets, V.P., Efimov, G.N., and Stolyarov, I.A., Experience of the Russian Federation in establishing the State Geodetic Coordinate System in 2011, Geodeziya, kartografiya, kadastr, GIS—problemy i perspektivy razvitiya. Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Novopolotsk, 9–10 iyunya 2016 g.) (Geodesy, Cartography, Cadastre, and GIS: Problems and Development Prospects. Proc. Int. Sci.-Tech. Conference (Novopolotsk, June 9–10, 2016)), Novopolotsk, 2016, part 1, pp. 48–65.

  22. Hasanov, I.M. and Muravyev, L.A., Comparison of the new gravity field model XGM2019 with other modern global models of the gravitational field for the Magadan region, Geoinformatics: Theoretical and Applied Aspects 2020. Conference Proceedings, Kyiv, 2020, pp. 1–5. https://doi.org/10.3997/2214-4609.2020geo112.

  23. Hauk, M. and Pail, R., Treatment of ocean tide aliasing in the context of a next generation gravity field mission, Geophys. J. Int., 2018, vol. 214, no. 1, pp. 345–365. https://doi.org/10.1093/gji/ggy145

    Article  Google Scholar 

  24. Hirt, C., Featherstone, W.E., and Marti, U., Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data, J. Geod., 2010, vol. 84, no. 9, pp. 557–567. https://doi.org/10.1007/s00190-010-0395-1

    Article  Google Scholar 

  25. Hobson, E.W., The Theory of Spherical and Ellipsoidal Harmonics, Cambridge: Univ. Press, 1931.

    Google Scholar 

  26. Hobson, E.W., The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, 1955.

    Google Scholar 

  27. Hobson, E.W., The Theory of Spherical and Ellipsoidal Harmonics, New York: Chelsea, 1965.

  28. Ince, E.S., Barthelmes, F., Reißland, S., Elger, K., Förste, Ch., Flechtner, F., and Schuh, H., ICGEM–15 years of successful collection and distribution of global gravitational models, associated services and future plans, Earth Syst. Sci. Data, 2019, vol. 11, no. 2, pp. 647–674. https://doi.org/10.5194/essd-11-647-2019

    Article  Google Scholar 

  29. King-Hele, D.G., The Earth’s gravitational potential, deduced from the orbits of artificial satellites, Geophys. J. Int., 1962, vol. 6, no. 2, pp. 270–272.

    Article  Google Scholar 

  30. Köhnlein, W., The Earth’s gravitational field as derived from a combination of satellite data with gravity data, 14th General Assembly, IUGG, Lucerne, 1967, pp. 57–72.

    Google Scholar 

  31. Koneshov, V.N. and Nepoklonov, V.B., Studying the representation accuracy of the Earth’s gravity field in the polar regions based on the global geopotential models, Izv., Phys. Solid Earth, 2018, vol. 54, pp. 504–512. https://doi.org/10.1134/S1069351318030047

    Article  Google Scholar 

  32. Koneshov, V.N., Zheleznyak, L.K., Mikhailov, P.S., and Solov’ev, V.N., Use of the Earth’s gravitational model in marine gravity measurements, Izv., Phys. Solid Earth, 2015, vol. 51, pp. 559–565. https://doi.org/10.1134/S1069351315040138

    Article  Google Scholar 

  33. Koneshov, V.N., Nepoklonov, V.B., Solov’yev, V.N., and Zheleznyak, L.K., Comparison of modern global ultrahigh-degree models of the Earth’s gravitational field, Geofiz. Issled., 2019, vol. 20, no. 1, pp. 13–26. https://doi.org/10.21455/gr2019.1-2

    Article  Google Scholar 

  34. Kozai, Y., New determination of zonal harmonics coefficients of the Earth’s gravitational potential, Publ. Astron. Soc. Jpn., 1964, vol. 16.

  35. Kvas, A., Brockmann, J., M., Krauss, S., Schubert, T., Gruber, T., Meer, U., Mayer-Gürr, T., Schuh, W.-D., Jäggi, A., and Pail, R., GOCO06s—a satellite-only global gravity field model, Earth Syst. Sci. Data, 2021, vol. 13, no. 1, pp. 99–118. https://doi.org/10.5194/essd-13-99-2021

    Article  Google Scholar 

  36. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., and Olson, T.R., The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. Report NAS 1.60:206861 no. Rept-98B00052, Patent Number: NASA/TP-1998-206861, Greenbelt, Maryland: NASA Goddard Space Flight Center, 1998. https://ntrs.nasa.gov/citations/19980218814.

    Google Scholar 

  37. Liang, W., Xu, X., Li, J., and Zhu, G., The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data, Acta Geod. Cartogr. Sin., 2018, vol. 47, no. 4, pp. 425–434. https://doi.org/10.11947/j.AGCS.2018.20170269

    Article  Google Scholar 

  38. Mayer-Gürr, T., Eicker, A., and Ilk, K.H., ITG-GRACE02s: A GRACE gravity field derived from short arcs of the satellite’s orbit, Proceedings of the First Symposium of International Gravity Field Service, Istanbul, 2007, pp. 193–198. https://www.harita.gov.tr/images/dergi/df57dbded091b01.pdf.

  39. Molodenskii, M.S., A method of joint processing of gravimetric and geodetic materials for studying the gravitational field of the Earth and its figure, in Izbr. trudy (Selected Works), Moscow: Ob’’edin. Inst. Fiz. Zemli Ross. Akad. Nauk, 1999, pp. 218–224.

  40. Molodenskii, M.S., Eremeev, V.F., and Yurkina, M.I., Methods for studying the external gravitational field and the Earth’s figure, Tr. TSNIIGAiK, 1960, no. 1960.

  41. Nepoklonov, V.B., On the use of new models of the Earth’s gravitational field in automated survey and design technologies, Avtom. Tekhnol. Izyskanii Proekt., 2009, no. 2, pp. 72–76.

  42. Nepoklonov, V.B., Maksimova, M.V., and Abakushina, M.V., Analysis of the dynamics of the system of mathematical models of the Earth’s gravitational field, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’’yemka, 2016, vol. 60, no. 3, pp. 8–14.

  43. Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J.M., Abrikosov Ol., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., and Tscherning, C.C., First GOCE gravity field models derived by three different approaches, J. Geod., 2011, vol. 85, no. 11, pp. 819–843.

    Article  Google Scholar 

  44. Pail, R., Fecher, T., Barnes, D., Factor, J., Holmes, S., Gruber, T., and Zingerle, P., The Experimental Gravity Field Model XGM2016, GFZ Data Services, 2017. https://doi.org/10.5880/icgem.2017.003.

  45. Panteleev, V.L., Fizika Zemli i planet. Kurs lektsii (Physics of the Earth and Planets. Lecture Course), Moscow: Mosk. Gos. Univ., 2001.

  46. Parametry Zemli 1990 (PZ 90.11). Spravochnoe rukovodstvo (Parameters of the Earth 1990 (PZ 90.11). Reference Guide), Moscow: 27 TsNII, 2014.

  47. Pavlis, N.K., Gravity, global models, in Encyclopedia of Solid Earth Geophysics, Gupta, H.K., Ed., Dordrecht: Springer, 2011. https://doi.org/10.1007/978-90-481-8702-7_76.

  48. Pavlis, N.K., Factor, J.K., and Holmes, S.A., Terrain-related gravimetric quantities computed for the next EGM, Proceedings of the 1st International Symposium of the International Gravity Field Service, 2007, vol. 18, pp. 318–323.

  49. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., and Factor, J.K., The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 2012, vol. 117, no. B4. https://doi.org/10.1029/2011JB008916

  50. Pellinen, L.P., Determining the parameters of the figure and the gravitational field of the Earth in TsNIIGAiK, Geod. Kartogr., 1992, no. 4, pp. 29–35.

  51. Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., König, R., Loyer, S., Neumayer, H., Marty, J.-C., Barthelmes, F., Perosanz, F., and Zhu, S.Y., A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN1S), Geophys. Res. Lett., 2002, vol. 29, no. 14, pp. 37-1–37-4.

  52. Reigber, C., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, C., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F., and Fayard, T., The CHAMP-only earth gravity field model EIGEN-2, Adv. Space Res., 2003, vol. 31, no. 8, pp. 1883–1888.

    Article  Google Scholar 

  53. Sandwell, D.T. and Smith, W.H.F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate, J. Geophys. Res., 2009, vol. 114, no. B1. https://doi.org/10.1029/2008JB006008

  54. Sandwell, D.T., Smith, W.H.F., Gille, S., Kappel, E., Jayne, S., Soofi, K., Coakley, B., and Geli, L., Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission, C. R. Geosci., 2006, vol. 338, pp. 1049–1062.

    Article  Google Scholar 

  55. Zingerle, P., Brockmann, J.M., Pail, R., Gruber, T., and Willberg, M., The polar extended gravity field model TIM_R6, GFZ Data Services, 2019a. https://doi.org/10.5880/ICGEM.2019.005.

  56. Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X., The Experimental Gravity Field Model XGM2019, GFZ Data Services, 2019a. https://doi.org/10.5880/ICGEM.2019.007.

  57. Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X., The combined global gravity field model XGM2019, J. Geod., 2020, vol. 94, artic. no. 66. https://doi.org/10.1007/s00190-020-01398-0

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers for constructive comments and suggestions.

Funding

This study was carried out under the state task of IPE RAS and supported by the Russian Foundation for Basic Research (project nos. 19-35-51014, 20-05-00524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Mikhailov.

Ethics declarations

The authors declare that there is no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, P.S., Koneshov, V.N., Pogorelov, V.V. et al. High-Degree Models of the Earth’s Gravity Field: History of Development, Assessment of Prospects and Resolution. Seism. Instr. 57, 446–461 (2021). https://doi.org/10.3103/S0747923921040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921040083

Keywords:

Navigation