Skip to main content
Log in

Sparseness of Natural Oscillations Spectrum for Double-Mirror Open Resonator Using Mode-Selective Scatterers on One of Mirrors Surface

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The effective procedure for spectrum sparseness of natural oscillations of double-mirror open resonators (OR) is proposed. It is based on the placement of scatterers with a specially determined geometric profile on one of the mirrors surface, forming the single mode-selective reflector. This procedure is used to synthesize two profiles of these scatterers for OR with flat and cylindrical mirrors. We propose the rectangular metal bar and the echelette-corner reflector with three rectangular steps symmetric to the plane of resonator symmetry. These scatterers placed on the flat OR mirror provide a minimal effect on the spatial-frequency characteristics of the operating natural oscillation, and significantly reduce the Q-factor of most of the rest oscillations. The spectral characteristics of the OR with these inserts are calculated for excitation by the current source and the eigen mode of a supply waveguide. The possibility of significant decrease in the number of OR natural oscillations is shown, in comparison with the resonator without these scatterers. The effect of increasing the radiation Q-factor of operating oscillation is observed using the echelette-corner scatterer. The technique used to determine the scatterers geometric profile is suitable for spectrum sparseness of the OR of arbitrary dimensions with mirrors of any shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. V. P. Shestopalov, Diffraction Electronics (Vyssh. Shkola, Kharkiv, 1976).

    Google Scholar 

  2. T. Idehara, S. P. Sabchevski, M. Glyavin, S. Mitsudo, "The gyrotrons as promising radiation sources for THz sensing and imaging," Appl. Sci., v.10, n.3, p.980 (2020). DOI: https://doi.org/10.3390/app10030980.

    Article  Google Scholar 

  3. O. A. Ivanov, A. A. Vikharev, A. M. Gorbachev, V. A. Isaev, M. A. Lobaev, A. L. Vikharev, S. V. Kuzikov, J. L. Hirshfield, M. A. LaPointe, "Active quasioptical Ka-band RF pulse compressor switched by a diffraction grating," Phys. Rev. Spec. Top. - Accel. Beams, v.12, n.9, p.093501 (2009). DOI: https://doi.org/10.1103/PhysRevSTAB.12.093501.

    Article  Google Scholar 

  4. Y. Y. Danilov, S. V. Kuzikov, V. G. Pavel’ev, Y. I. Koshurinov, "Microwave pulses compressed in a barrel-shaped resonator with screw corrugation," Tech. Phys. Lett., v.27, n.3, p.245 (2001). DOI: https://doi.org/10.1134/1.1359840.

    Article  Google Scholar 

  5. N. Burambayeva, S. Sautbekov, Y. K. Sirenko, A. Vertiy, "Compact open resonator as the power-storage unit for a microwave compressor," Telecommun. Radio Eng., v.74, n.1, p.29 (2015). DOI: https://doi.org/10.1615/TelecomRadEng.v74.i1.30.

    Article  Google Scholar 

  6. A. A. Vertii, I. V. Ivanchenko, N. A. Popenko, V. P. Shestopalov, "Diffractive selection in screened quasioptical resonators," Radiophys. Quantum Electron., v.31, n.8, p.691 (1988). DOI: https://doi.org/10.1007/BF01039501.

    Article  Google Scholar 

  7. H. Fouckhardt, A.-K. Kleinschmidt, J. Strassner, C. Doering, "1D confocal broad area semiconductor lasers (confocal BALs) for fundamental transverse mode selection (TMS#0)," Adv. Optoelectron., v.2019, p.1 (2019). DOI: https://doi.org/10.1155/2019/2719808.

    Article  Google Scholar 

  8. A. V. Raskhodchikov, S. A. Scherbak, N. V. Kryzhanovskaya, A. E. Zhukov, A. A. Lipovskii, "Dielectric surrounding decimates eigenmodes of microdisk optical resonators," J. Phys. Conf. Ser., v.1124, p.051031 (2018). DOI: https://doi.org/10.1088/1742-6596/1124/5/051031.

    Article  Google Scholar 

  9. S. G. Ilchenko, R. A. Lymarenko, V. B. Taranenko, N. Kyzas, A. Belosludtsev, "Multilayer dielectric structure for mode selection of wide-aperture laser," in 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2019). DOI: https://doi.org/10.1109/CAOL46282.2019.9019492.

    Chapter  Google Scholar 

  10. D. K. Serkland, G. M. Peake, M. G. Wood, A. J. Griñe, K. M. Geib, G. A. Keeler, C. P. Hains, H. M. So, "Mode selection and tuning of single-frequency short-cavity VECSELs," in Vertical-Cavity Surface-Emitting Lasers XXII (SPIE, 2018). DOI: https://doi.org/10.1117/12.2291197.

    Chapter  Google Scholar 

  11. O. P. Ostroukh, R. A. Lymarenko, V. B. Taranenko, "Model of wide-aperture laser with intracavity diffractive element," in 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2019). DOI: https://doi.org/10.1109/CAOL46282.2019.9019567.

    Chapter  Google Scholar 

  12. N. Ginzburg, A. Sergeev, E. Kocharovskaya, A. Malkin, E. Egorova, V. Zaslavsky, "Diffraction mode selection in planar lasers with Bragg resonators," ITM Web Conf., v.30, p.06012 (2019). DOI: https://doi.org/10.1051/itmconf/20193006012.

    Article  Google Scholar 

  13. N. S. Ginzburg, A. S. Sergeev, E. R. Kocharovskaya, A. M. Malkin, E. D. Egorova, V. Y. Zaslavsky, "Diffraction mode selection in planar Bragg resonators of optical and microwave wavelength ranges," Phys. Lett. A, v.384, n.10, p.126219 (2020). DOI: https://doi.org/10.1016/j.physleta.2019.126219.

    Article  MathSciNet  Google Scholar 

  14. N. S. Ginzburg, A. S. Sergeev, E. R. Kocharovskaya, A. M. Malkin, E. D. Egorova, V. Y. Zaslavsky, "Diffraction-mode selection in heterolasers with planar Bragg structures," Semiconductors, v.54, n.9, p.1161 (2020). DOI: https://doi.org/10.1134/S1063782620090122.

    Article  Google Scholar 

  15. O. Di Monaco, W. Daniau, I. Lajoie, Y. Gruson, M. Chaubet, V. Giordano, "Mode selection for a whispering gallery mode resonator," Electron. Lett., v.32, n.7, p.669 (1996). DOI: https://doi.org/10.1049/el:19960427.

    Article  Google Scholar 

  16. L. G. Velychko, Y. K. Sirenko, "Controlled changes in spectra of open quasi-optical resonators," Prog. Electromagn. Res. B, v.16, p.85 (2009). DOI: https://doi.org/10.2528/PIERB09060202.

    Article  Google Scholar 

  17. S. P. Anokhov, T. Y. Marusiy, M. S. Soskin, Reconfigurable Lasers (Radio i Svyaz’, Moscow, 1982).

    Google Scholar 

  18. Y. K. Sirenko, O. V. Chistyakova, Selection mechanism in open resonator with diffraction arrays and principles of creating essentially single-mode structures (Kharkov, 1983).

  19. V. P. Shestopalov, Y. K. Sirenko, Dynamic Theory of Arrays (Naukova Dumka, Kiev, 1989).

    MATH  Google Scholar 

  20. O. I. Belous, A. A. Kirilenko, A. I. Fisun, "Quasi frequency spectra of an open resonator with the comb grid," Izv. VUZ Radioelektronika, v.41, n.4, p.8 (1998).

    Google Scholar 

  21. C. A. Curwen, J. L. Reno, B. S. Williams, "Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL," Nat. Photonics, v.13, n.12, p.855 (2019). DOI: https://doi.org/10.1038/s41566-019-0518-z.

    Article  Google Scholar 

  22. Y. K. Sirenko, N. P. Yashina, S. Ström, Modeling and analysis of transient processes in open resonant structures (Springer New York, New York, NY, 2007). DOI: https://doi.org/10.1007/0-387-32577-8.

    Book  MATH  Google Scholar 

  23. S. N. Vlasov, E. V. Koposova, A. B. Pavel’ev, V. I. Khizhnyak, "Gyrotrons with echelette resonators," Radiophys. Quantum Electron., v.39, n.6, p.458 (1996). DOI: https://doi.org/10.1007/BF02122392.

    Article  Google Scholar 

  24. V. E. Zapevalov, S. N. Vlasov, E. V. Koposova, A. N. Kuftin, A. B. Paveliev, N. A. Zavolsky, "Various types of echelette resonators for gyrotrons," EPJ Web Conf., v.195, p.01022 (2018). DOI: https://doi.org/10.1051/epjconf/201819501022.

    Article  Google Scholar 

  25. E. L. Kosarev, "Open resonator with echelette array," High-power Electron., n.5, p.93 (1968). URI: http://kapitza.ru/arhiv/lib/ebm/5/93.pdf.

    Google Scholar 

  26. V. L. Pazynin, "A model of two-stage active compressor of microwave-pulses with open two-mirror storage resonator in the first stage," Phys. Bases Instrum., v.9, n.3, p.14 (2020). DOI: https://doi.org/10.25210/jfop-2003-014027.

    Article  Google Scholar 

  27. O. Shafalyuk, P. D. Smith, L. G. Velychko, "Rigorous substantiation of the method of exact absorbing conditions in time-domain analysis of open electrodynamic structures," Prog. Electromagn. Res. B, v.41, p.231 (2012). DOI: https://doi.org/10.2528/PIERB12040506.

    Article  Google Scholar 

  28. Electromagnetic Waves in Complex Systems (Springer International Publishing, Cham, 2016). DOI: https://doi.org/10.1007/978-3-319-31631-4.

    Book  MATH  Google Scholar 

  29. V. L. Pazynin, K. Y. Sirenko, Y. K. Sirenko, N. P. Yashina, "Exact absorbing conditions for the initial boundary value problem of computational electrodynamics. Review," Phys. Bases Instrum., v.6, n.4, p.2 (2017). DOI: https://doi.org/10.25210/jfop-1704-002033.

    Article  Google Scholar 

  30. A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech House, Boston, 2005). URI: https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx.

    MATH  Google Scholar 

  31. V. L. Pazynin, "Strict electromagnetic model of accumulation resonator of an active microwave power compressor," Phys. Bases Instrum., v.7, n.3, p.86 (2018). DOI: https://doi.org/10.25210/jfop-1803-086107.

    Article  Google Scholar 

  32. V. F. Kravchenko, Y. K. Sirenko, K. Y. Sirenko, Transformation and Emission of Electromagnetic Waves by Open Resonant Structures. Modeling and Analysis of Transitional and Steady-State Processes (Fizmatlit, Moscow, 2011).

    Google Scholar 

  33. V. L. Pazynin, Model and analysis of processes of passive and active compression of electro-magnetic impulses of microchip and optical ranges (Kharkiv, 2019).

  34. O. Svelto, Principles of Lasers (Springer, Boston, MA, 1976). DOI: https://doi.org/10.1007/978-1-4899-2748-4.

    Book  Google Scholar 

  35. Y. K. Sirenko, Modeling and Analysis of Transient Processes in Open Periodic, Waveguide and Compact Resonators (Edena, Kharkov, 2003).

    Google Scholar 

  36. P. N. Melezhik, V. S. Miroshnichenko, Y. B. Senkevich, "An open resonator with two conductive cylindrical insertions," Telecommun. Radio Eng., v.65, n.4, p.293 (2006). DOI: https://doi.org/10.1615/TelecomRadEng.v65.i4.10.

    Article  Google Scholar 

  37. N. A. Semenov, Technical Electrodynamics. Study guide for universities (Svyaz, Moscow, 1973).

    Google Scholar 

  38. A. I. Fisun, V. I. Tkachenko, O. I. Belous, A. A. Kirilenko, "Excitation of oscillations in open resonators with echelette and angle-echelette mirrors," J. Commun. Technol. Electron., v.45, n.5, p.576 (2000). URI: https://elibrary.ru/item.asp?id=27763822.

    Google Scholar 

  39. O. I. Belous, A. A. Kirilenko, A. I. Fisun, "Quasioptical resonant systems for millimeter and submillimeter wave solid-state electronic devices," Radio Phys. Electron., v.13, p.377 (2008). URI: http://dspace.nbuv.gov.ua/handle/123456789/10760.

    Google Scholar 

  40. O. Bilous, A. Kirilenko, M. Natarov, S. Sirenko, A. Fisun, A. Shubny, "Quasioptical millimeter wave solid-state generator," Radio Phys. Electron., v.23, n.4, p.67 (2018). DOI: https://doi.org/10.15407/rej2018.04.067.

    Article  Google Scholar 

  41. E. I. Nefedov, E. N. Privalov, "Single-frequency oscillations in coaxial resonators with “non-focusing” mirrors," Reports USSR, v.307, n.4, p.872 (1989).

    Google Scholar 

  42. I. K. Kuzmichev, P. N. Melezhik, A. Y. Poyedinchuk, "An open resonator for physical studies," Int. J. Infrared Millim. Waves, v.27, n.6, p.857 (2007). DOI: https://doi.org/10.1007/s10762-006-9122-7.

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses his sincere gratitude to Doctor of Phys.-Math. sciences Professor Yu.K. Sirenko, for interest in the research topic, and number of remarks contributed to the improvement of the materials presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadym L. Pazynin.

Ethics declarations

ADDITIONAL INFORMATION

Vadym L. Pazynin

The author declares that he has no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021100010 with DOI: https://doi.org/10.20535/S0021347021100010

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 10, pp. 599-611, August, 2021 https://doi.org/10.20535/S0021347021100010 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazynin, V.L. Sparseness of Natural Oscillations Spectrum for Double-Mirror Open Resonator Using Mode-Selective Scatterers on One of Mirrors Surface. Radioelectron.Commun.Syst. 64, 525–534 (2021). https://doi.org/10.3103/S0735272721100010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721100010

Navigation