Skip to main content
Log in

Intrahemispheric Symmetry of Brain Perfusion. Part 1. Calculation Procedure

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

As has been noted in the analysis of the symmetry of radiopharmaceutical (RPh) distribution between the cerebral hemispheres according to the data of a single-photon emission computed tomography (SPECT), there are quasi-symmetric regions of perfusion in the hemispheres. This study is focused on the investigation of this observation that eventually will lead to the development of new quantitative criteria of the brain functional state in terms of effective perfusion, and possibly will provide new knowledge on the structural and functional patterns of the brain. The authors develop a methodology for estimating intrahemispheric symmetry (IHS) of brain perfusion based on SPECT data. 32 SPECT images of patients with different levels of brain perfusion were analyzed. Scintigraphic investigations of the brain were conducted with 99mTc-HMPAO on the gamma camera E.Cam (Siemens) with LEHR collimator. The SPECT investigation was conducted 15–20 minutes after the RPh injection. The tomography study included the collection of 128 projections for 128×128 matrix; the injected RPh activity amounted to 740 mBq. The developed computerized standardization procedure of spatial orientation of brain SPECT image was implemented using the Scintybrain software in the Matlab 2018 environment. The main criterion for finding quasi-symmetric lines of brain perfusion profile is the cross-correlation coefficient r and the standard deviation between them. The number of selected pairs of profile lines depends on the predetermined threshold rmin. The analysis of experimental data shows that it is recommended to adopt the rmin value equal to 0.94 for quantifying the brain IHS. This paper presents a hypothesis of intrahemispheric quasi-symmetry of brain perfusion. The developed method of IHS analysis provides a new diagnostic information about the spatial RPh distribution and represents a fundamentally new tool for assessing the interrelationships of circulatory disorders of brain tissues in its various segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. D. C. Costa, "Single photon emission tomography (SPET) with 99Tc m-hexamethylpropyleneamineoxime (HMPAO) in research and clinical practice - a useful tool," Vasc. Med. Rev., v.vmr-1, n.2, p.179 (1990). DOI: https://doi.org/10.1177/1358836X9000100207.

    Article  Google Scholar 

  2. J. W. Choi, M. H. Kim, S.-A. Park, D. S. Sin, M.-S. Kim, "Neural correlates of motor recovery measured by SPECT at six months after basal ganglia stroke," Ann. Rehabil. Med., v.41, n.6, p.905 (2017). DOI: https://doi.org/10.5535/arm.2017.41.6.905.

    Article  Google Scholar 

  3. D. S. Liebeskind, "Imaging the future of stroke: I. Ischemia," Ann. Neurol., v.66, n.5, p.574 (2009). DOI: https://doi.org/10.1002/ana.21787.

    Article  Google Scholar 

  4. B. H. Brinkmann, D. T. Jones, M. Stead, N. Kazemi, T. J. O’Brien, E. L. So, H. Blumenfeld, B. P. Mullan, G. A. Worrell, "Statistical parametric mapping demonstrates asymmetric uptake with Tc-99m ECD and Tc-99m HMPAO SPECT in normal brain," J. Cereb. Blood Flow Metab., v.32, n.1, p.190 (2012). DOI: https://doi.org/10.1038/jcbfm.2011.123.

    Article  Google Scholar 

  5. K. M. Kang, C.-H. Sohn, B. S. Kim, Y. I. Kim, S. H. Choi, T. J. Yun, J. -h. Kim, S.-W. Park, G. J. Cheon, M. H. Han, "Correlation of asymmetry indices measured by arterial spin-labeling MR imaging and SPECT in patients with crossed cerebellar diaschisis," Am. J. Neuroradiol., v.36, n.9, p.1662 (2015). DOI: https://doi.org/10.3174/ajnr.A4366.

    Article  Google Scholar 

  6. A. K. Kondakov, Radionuklidnyie metodyi izucheniya perfuzii golovnogo mozga v diagnostike i kontrole kachestva lecheniya degenerativnyih i funktsionalnyih porazheniy nervnoy sistemy (Moscow, 2018).

  7. A. W. Toga, P. M. Thompson, "Mapping brain asymmetry," Nat. Rev. Neurosci., v.4, n.1, p.37 (2003). DOI: https://doi.org/10.1038/nrn1009.

    Article  Google Scholar 

  8. M. LeMay, "Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate," Ann. New York Acad. Sci., v.280, n.1 Origins and E, p.349 (1976). DOI: https://doi.org/10.1111/j.1749-6632.1976.tb25499.x.

    Article  Google Scholar 

  9. J. M. Mountz, E. C. San Pedro, "Basis and clinical application of brain imaging," in The Pathophysiologic Basis of Nuclear Medicine (Springer Berlin Heidelberg, Berlin, 2006). DOI: https://doi.org/10.1007/978-3-540-47953-6_18.

    Chapter  Google Scholar 

  10. T. Makazlieva, O. Vaskova, B. Crcareva, M. Zdraveska-Kocova, R. Krsteska, M. Stoeva, E. Mukaetova-Ladinska, "Our preliminary experience with SPECT 99m Tc-HMPAO brain perfusion scans in diagnosis of dementia," Acta Morphol., v.12, n.1, p.22 (2015). URI: http://hdl.handle.net/20.500.12188/8102.

    Google Scholar 

  11. M. A. Viergever, J. B. A. Maintz, W. J. Niessen, H. J. Noordmans, J. P. W. Pluim, R. Stokking, K. L. Vincken, "Registration, segmentation, and visualization of multimodal brain images," Comput. Med. Imaging Graph., v.25, n.2, p.147 (2001). DOI: https://doi.org/10.1016/S0895-6111(00)00065-3.

    Article  Google Scholar 

  12. C. Grova, P. Jannin, A. Biraben, I. Buvat, H. Benali, A. M. Bernard, J. M. Scarabin, B. Gibaud, "A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy," Phys. Med. Biol., v.48, n.24, p.4023 (2003). DOI: https://doi.org/10.1088/0031-9155/48/24/003.

    Article  MATH  Google Scholar 

  13. L. Lazli, M. Boukadoum, O. A. Mohamed, "A survey on computer-aided diagnosis of brain disorders through MRI based on machine learning and data mining methodologies with an emphasis on Alzheimer disease diagnosis and the contribution of the multimodal fusion," Appl. Sci., v.10, n.5, p.1894 (2020). DOI: https://doi.org/10.3390/app10051894.

    Article  Google Scholar 

  14. N. Nikolov, S. Makeev, T. Novikova, V. Tsikalo, "Spatial standardization of spect brain images with perfusion radiopharmaceuticals," Innov. Biosyst. Bioeng., v.4, n.2, p.67 (2020). DOI: https://doi.org/10.20535/ibb.2020.4.2.195546.

    Article  Google Scholar 

  15. A. Baldassarre, L. E. Ramsey, J. S. Siegel, G. L. Shulman, M. Corbetta, "Brain connectivity and neurological disorders after stroke," Curr. Opin. Neurol., v.29, n.6, p.706 (2016). DOI: https://doi.org/10.1097/WCO.0000000000000396.

    Article  Google Scholar 

  16. X. Guo, X. Duan, H. Chen, C. He, J. Xiao, S. Han, Y. Fan, J. Guo, H. Chen, "Altered inter- and intrahemispheric functional connectivity dynamics in autistic children," Hum. Brain Mapp., v.41, n.2, p.419 (2020). DOI: https://doi.org/10.1002/hbm.24812.

    Article  Google Scholar 

  17. P. A. Robinson, "The balanced and introspective brain," J. R. Soc. Interface, v.14, n.130, p.20160994 (2017). DOI: https://doi.org/10.1098/rsif.2016.0994.

    Article  Google Scholar 

  18. D. Kliemann, R. Adolphs, J. M. Tyszka, B. Fischl, B. T. T. Yeo, R. Nair, J. Dubois, L. K. Paul, "Intrinsic functional connectivity of the brain in adults with a single cerebral hemisphere," Cell Reports, v.29, n.8, p.2398 (2019). DOI: https://doi.org/10.1016/j.celrep.2019.10.067.

    Article  Google Scholar 

  19. M. Filippi, S. Basaia, E. Canu, F. Imperiale, A. Meani, F. Caso, G. Magnani, M. Falautano, G. Comi, A. Falini, F. Agosta, "Brain network connectivity differs in early-onset neurodegenerative dementia," Neurology, v.89, n.17, p.1764 (2017). DOI: https://doi.org/10.1212/WNL.0000000000004577.

    Article  Google Scholar 

  20. X. Ma, X. Huang, Y. Ge, Y. Hu, W. Chen, A. Liu, H. Liu, Y. Chen, B. Li, X. Ning, "Brain connectivity variation topography associated with working memory," PLOS ONE, v.11, n.12, p.e0165168 (2016). DOI: https://doi.org/10.1371/journal.pone.0165168.

    Article  Google Scholar 

  21. N. A. Nikolov, S. S. Makeev, T. G. Novikova, L. L. Chebotariova, M. V. Globa, O. A. Unevich, E. V. Martish, "Determination of absolute cerebral blood flow scintigraphy with lipophilic radiopharmaceutical," Med. Phys., n.3, p.36 (2018). URI: https://elibrary.ru/item.asp?id=35664229.

    Google Scholar 

  22. T. Carmen, "Do children with aggressive behavior have temporal lobe changes?," Alasbimn J., v.5, n.19, p.AJ19 (2003). URI: http://web.uchile.cl/vignette/alasbimn2/alasbimn/CDA/sec_b/0,1206,SCID%253D2837,00.html.

    Google Scholar 

  23. M. Schmidt, T. Engelhorn, S. Lang, H. Luecking, P. Hoelter, K. Fröhlich, P. Ritt, J. Maler, T. Kuwert, J. Kornhuber, A. Doerfler, "DSC brain perfusion using advanced deconvolution models in the diagnostic work-up of dementia and mild cognitive impairment: a semiquantitative comparison with HMPAO-SPECT-brain perfusion," J. Clin. Med., v.9, n.6, p.1800 (2020). DOI: https://doi.org/10.3390/jcm9061800.

    Article  Google Scholar 

  24. X. Zheng, W. Wei, Q. Huang, S. Song, J. Wan, G. Huang, "A computer-aided analysis method of SPECT brain images for quantitative treatment monitoring: performance evaluations and clinical applications," BioMed Res. Int., v.2017, p.1 (2017). DOI: https://doi.org/10.1155/2017/1962181.

    Article  Google Scholar 

  25. S. Cascianelli, M. Scialpi, S. Amici, N. Forini, M. Minestrini, M. Fravolini, H. Sinzinger, O. Schillaci, B. Palumbo, "Role of artificial intelligence techniques (automatic classifiers) in molecular imaging modalities in neurodegenerative diseases," Curr. Alzheimer Res., v.14, n.2, p.198 (2017). DOI: https://doi.org/10.2174/1567205013666160620122926.

    Article  Google Scholar 

  26. Y. Höller, A. C. Bathke, A. Uhl, N. Strobl, A. Lang, J. Bergmann, R. Nardone, F. Rossini, H. Zauner, M. Kirschner, A. Jahanbekam, E. Trinka, W. Staffen, "Combining SPECT and quantitative EEG analysis for the automated differential diagnosis of disorders with amnestic symptoms," Front. Aging Neurosci., v.9 (2017). DOI: https://doi.org/10.3389/fnagi.2017.00290.

    Article  Google Scholar 

  27. F. J. Martinez-Murcia, J. M. Górriz, J. Ramírez, I. A. Illán, F. Segovia, D. Castillo-Barnes, D. Salas-Gonzalez, "Functional brain imaging synthesis based on image decomposition and kernel modeling: application to neurodegenerative diseases," Front. Neuroinformatics, v.11 (2017). DOI: https://doi.org/10.3389/fninf.2017.00065.

    Article  Google Scholar 

  28. N. A. Nikolov, T. H. Novikova, S. S. Makeуev, "Assessment of informative value of effective cerebral blood flow calculation technique according to 99mTc-HMPAO polyphase scintigraphy data," Ukr. J. Radiol. Oncol., v.29, n.2, p.62 (2021). DOI: https://doi.org/10.46879/ukroj.2.2021.62-75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Nikolov.

Ethics declarations

ADDITIONAL INFORMATION

N. A. Nikolov, S. S. Makeiev, T. G. Novikova, V. O. Tsikalo, and Ye. S. Kriukova

The authors declare that they have no conflicts of interest.

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments, European Convention on Human Rights, which have ratified by Ukraine and form an integral part of national legislation.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S002134702108001X with DOI: https://doi.org/10.20535/S002134702108001X

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 8, pp. 463-475, July, 2021 https://doi.org/10.20535/S002134702108001X .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolov, N.A., Makeiev, S.S., Novikova, T.G. et al. Intrahemispheric Symmetry of Brain Perfusion. Part 1. Calculation Procedure. Radioelectron.Commun.Syst. 64, 403–412 (2021). https://doi.org/10.3103/S073527272108001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527272108001X

Navigation