Skip to main content
Log in

Stopband Characteristics Improvement of Waveguide Planar E-plane Filters

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The development results of new waveguide planar filters with high selectivity are presented in this article. New bandpass filters (BPF) based on folded metal structures have poles of attenuation characteristics near the filter passband and they are focused on selectivity improvement. Filters are designed in a fully symmetrical topology, which improves performance reproducibility, manufacturability, and reduces manufacturing cost. The proposed BPFs on metal-dielectric structures are based on stepped impedance resonators (SIR) with preservation of the “in-line” topology. They allow us to expand the stopband to the boundaries of the waveguide operating passband and significantly increase the insertion loss level in comparison with the original filters based on homogeneous resonators. In this case, the typical filter linear dimension reduction is about of 30%. Also we show, that the proposed filters form the attenuation characteristic pole far from the filter passband, which makes it possible to achieve a high rejection level with a small number of resonators. The measured characteristics of the filter prototypes are in good agreement with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

References

  1. Y. Konishi, K. Uenakada, N. Yazawa, N. Hoshino, "New microwave components with mounted planar circuit in waveguide," NHK Lab. Note, n.163, p.2 (1973).

    Google Scholar 

  2. Y. Konishi, "12-GHz-band FM receiver for satellite broadcasting," IEEE Trans. Microw. Theory Tech., v.26, n.10, p.720 (1978). DOI: https://doi.org/10.1109/TMTT.1978.1129476.

    Article  Google Scholar 

  3. Y. Konishi, "Planar circuit mounted in waveguide used as a downconverter," IEEE Trans. Microw. Theory Tech., v.26, n.10, p.716 (1978). DOI: https://doi.org/10.1109/TMTT.1978.1129475.

    Article  Google Scholar 

  4. J. Bornemann, "A new class of E-plane integrated millimeter-wave filters," in IEEE MTT-S International Microwave Symposium Digest (IEEE, Washington, 1989). DOI: https://doi.org/10.1109/MWSYM.1989.38798.

    Chapter  Google Scholar 

  5. P. Kozakowski, A. Deleniv, "New resonator arrangement for reduced size E-plane filters," in 2011 IEEE MTT-S International Microwave Symposium (IEEE, Washington, 2011). DOI: https://doi.org/10.1109/MWSYM.2011.5973388.

    Chapter  Google Scholar 

  6. P. Kozakowski, A. Deleniv, "All metal insert E-plane filter with integrated extracted pole resonator," in 2012 42nd European Microwave Conference (IEEE, Washington, 2012). DOI: https://doi.org/10.23919/EuMC.2012.6459195.

    Chapter  Google Scholar 

  7. E. Doumanis, G. Goussetis, J. Huurinainen, "Transmission zero realization in E-plane filters by means of I/O resonator tapping," in 2016 46th European Microwave Conference (EuMC) (IEEE, Washington, 2016). DOI: https://doi.org/10.1109/EuMC.2016.7824456.

    Chapter  Google Scholar 

  8. S. Amari, J. Bornemann, "Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters," IEEE Microw. Guid. Wave Lett., v.9, n.10, p.404 (1999). DOI: https://doi.org/10.1109/75.798030.

    Article  Google Scholar 

  9. L. Codecasa, G. G. Gentili, M. Politi, "Exploiting port responses for wideband analysis of multimode lossless devices," IEEE Trans. Microw. Theory Tech., v.68, n.2, p.555 (2020). DOI: https://doi.org/10.1109/TMTT.2019.2952853.

    Article  Google Scholar 

  10. N. Suntheralingam, D. Budimir, "Enhanced waveguide bandpass filters using S-shaped resonators," Int. J. RF Microw. Comput. Eng., v.19, n.6, p.627 (2009). DOI: https://doi.org/10.1002/mmce.20373.

    Article  Google Scholar 

  11. D. Budimir, O. Glubokov, M. Potrebić, "Waveguide filters using T-shaped resonators," Electron. Lett., v.47, n.1, p.38 (2011). DOI: https://doi.org/10.1049/el.2010.2958.

    Article  Google Scholar 

  12. J. Y. Jin, X. Q. Lin, Y. Jiang, L. Wang, Y. Fan, "A novel E-plane substrate inserted bandpass filter with high selectivity and compact size," Int. J. RF Microw. Comput. Eng., v.24, n.4, p.451 (2014). DOI: https://doi.org/10.1002/mmce.20785.

    Article  Google Scholar 

  13. O. Glubokov, D. Budimir, "Extraction of generalized coupling coefficients for inline extracted pole filters with nonresonating nodes," IEEE Trans. Microw. Theory Tech., v.59, n.12, p.3023 (2011). DOI: https://doi.org/10.1109/TMTT.2011.2168967.

    Article  Google Scholar 

  14. N. Mohottige, O. Glubokov, U. Jankovic, D. Budimir, "Ultra compact inline E-plane waveguide bandpass filters using cross coupling," IEEE Trans. Microw. Theory Tech., v.64, n.8, p.2561 (2016). DOI: https://doi.org/10.1109/TMTT.2016.2578329.

    Article  Google Scholar 

  15. O. Glubokov, D. Budimir, "Compact filters using metal-dielectric inserts," in 2012 42nd European Microwave Conference (IEEE, Washington, 2012). DOI: https://doi.org/10.23919/EuMC.2012.6459337.

    Chapter  Google Scholar 

  16. J. Y. Jin, X. Q. Lin, Y. Jiang, Q. Xue, "A novel compact E-plane waveguide filter with multiple transmission zeroes," IEEE Trans. Microw. Theory Tech., v.63, n.10, p.3374 (2015). DOI: https://doi.org/10.1109/TMTT.2015.2462825.

    Article  Google Scholar 

  17. J. Y. Jin, X. Q. Lin, Q. Xue, "A novel dual-band bandpass E-plane filter using compact resonators," IEEE Microw. Wirel. Components Lett., v.26, n.7, p.484 (2016). DOI: https://doi.org/10.1109/LMWC.2016.2574818.

    Article  Google Scholar 

  18. J. D. Rhodes, "The generalized direct-coupled cavity linear phase filter," IEEE Trans. Microw. Theory Tech., v.18, n.6, p.308 (1970). DOI: https://doi.org/10.1109/TMTT.1970.1127224.

    Article  Google Scholar 

  19. M. Y. Omelyanenko, O. V. Tureeva, "Planar guide filters based on extended structures," Radioelectron. Commun. Syst., v.31, n.10, p.47 (1988).

    Google Scholar 

  20. U. Rosenberg, "New “Planar” waveguide cavity elliptic function filters," in 25th European Microwave Conference, 1995 (IEEE, Washington, 1995). DOI: https://doi.org/10.1109/EUMA.1995.337014.

    Chapter  Google Scholar 

  21. E. Ofli, R. Vahldieck, S. Amari, "Novel E-plane filters and diplexers with elliptic response for millimeter-wave applications," IEEE Trans. Microw. Theory Tech., v.53, n.3, p.843 (2005). DOI: https://doi.org/10.1109/TMTT.2004.842506.

    Article  Google Scholar 

  22. М. Y. Omelianenko, V. I. Tsymbal, "Synthesis of integral filters based on partially filled waveguides," Radioelectron. Commun. Syst., v.27, n.5, p.65 (1984).

    Google Scholar 

  23. M. G. Ishchenko, M. Y. Omelyanenko, O. V. Tureeva, "Waveguide-planar filters with suppression of high-order pass-bands," Radioelectron. Commun. Syst., v.32, n.10, p.68 (1989).

    Google Scholar 

  24. F. Arndt, J. Bornemann, R. Vahldieck, D. Grauerholz, "E-plane integrated circuit filters with improved stopband attenuation (short papers)," IEEE Trans. Microw. Theory Tech., v.32, n.10, p.1391 (1984). DOI: https://doi.org/10.1109/TMTT.1984.1132858.

    Article  Google Scholar 

  25. V. P. Gololobov, M. Y. Omelyanenko, G. N. Shelamov, "Waveguide-slot resonators with several slabs," Radioelectron. Commun. Syst., v.29, n.2, p.91 (1986).

    Google Scholar 

  26. M. Ma, J. Huang, Z. Yu, T. Gan, "A novel E-plane waveguide filter with three metal irises," Int. J. Infrared Millim. Waves, v.24, n.12, p.2181 (2003). DOI: https://doi.org/10.1023/B:IJIM.0000009773.84968.d8.

    Article  Google Scholar 

  27. D. Budimir, "Optimized E-plane bandpass filters with improved stopband performance," IEEE Trans. Microw. Theory Tech., v.45, n.2, p.212 (1997). DOI: https://doi.org/10.1109/22.557602.

    Article  Google Scholar 

  28. Y. Chen, S. Chang, C. Chang, T. Hong, W. Lo, "A compact step-impedance combline filter with symmetric insertion-loss response and wide stopband range," in 2006 IEEE MTT-S International Microwave Symposium Digest (IEEE, Washington, 2006). DOI: https://doi.org/10.1109/MWSYM.2006.249427.

    Chapter  Google Scholar 

  29. D. Bukuru, K. Song, F. Zhang, Y. Zhu, M. Fan, "Compact quad-band bandpass filter using quad-mode stepped impedance resonator and multiple coupling circuits," IEEE Trans. Microw. Theory Tech., v.65, n.3, p.783 (2017). DOI: https://doi.org/10.1109/TMTT.2016.2638814.

    Article  Google Scholar 

  30. M. Sagawa, M. Makimoto, S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., v.45, n.7, p.1078 (1997). DOI: https://doi.org/10.1109/22.598444.

    Article  Google Scholar 

  31. M. Omelianenko, T. Romanenko, "E-plane stepped-impedance bandpass filter with wide stopband," in 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, Washington, 2020). DOI: https://doi.org/10.1109/ELNANO50318.2020.9088888.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Romanenko.

Ethics declarations

ADDITIONAL INFORMATION

M. Yu. Omelianenko, T. V. Romanenko, S. Ya. Zhuk, and O. V. Turieieva

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021020011 with DOI: https://doi.org/10.20535/S0021347021020011

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omelianenko, M.Y., Romanenko, T.V., Zhuk, S.Y. et al. Stopband Characteristics Improvement of Waveguide Planar E-plane Filters. Radioelectron.Commun.Syst. 64, 53–63 (2021). https://doi.org/10.3103/S0735272721020011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721020011

Navigation