Skip to main content
Log in

Mode Mixing Suppression Algorithm for Empirical Mode Decomposition Based on Self-Filtering Method

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The Hilbert-Huang transform (HHT) is a classic method in time-frequency analysis field which was proposed in 1998. Since it is not limited by signal type, it is generally applied in medicine, target detection and so on. Empirical mode decomposition (EMD) is a pre-processing part of HHT. However, EMD still has many imperfect aspects, such as envelope fitting, the endpoint effect, mode mixing and other issues, of which the most important issue is the mode mixing. This paper proposes a mode mixing suppression algorithm based on self-filtering method using frequency conversion. The proposed algorithm focuses on the instantaneous frequency estimation and the false components removing procedures, which help the proposed algorithm to update or purify the designated intrinsic mode function (IMF). According the simulation results, the proposed algorithm can effectively suppress the mode mixing. Comparing with ensemble empirical mode decomposition (EEMD) and mask method, the suppression performance is increased by 26%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Stankovic, S. Stankovic, M. Dakovic, “From the STFT to the Wigner distribution [Lecture Notes],” IEEE Signal Proces. Mag.31, No. 3, 163 (2014). DOI: 10.1109/MSP.2014.2301791.

    Article  Google Scholar 

  2. M. A. Awal, S. Ouelha, S. Y. Dong, B. Boashash, “A robust high-resolution time-frequency representation based on the local optimization of the short-time fractional Fourier transform,” Digital Signal Processing70, 125 (Nov. 2017). DOI: 10.1016/j.dsp.2017.07.022.

  3. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory36, No. 5, 961 (1990). DOI: 10.1109/18.57199.

    Article  MathSciNet  Google Scholar 

  4. B. Boashash, “Note on the use of the Wigner distribution for time-frequency signal analysis,” IEEE Trans. Acoustics, Speech, Signal Processing36, No. 9, 1518 (1988). DOI: 10.1109/29.90380.

    Article  Google Scholar 

  5. T. Claasen, W. Mecklenbrauker, “Time-frequency signal analysis by means of the Wigner distribution,” Proc. of ICASSP’81. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 30 Mar.-1 Apr. 1981, Atlanta, %USA (IEEE, 1981), pp. 69–72. DOI: 10.1109/ICASSP.1981.1171331.

    Chapter  Google Scholar 

  6. D. Chan, “A non-aliased discrete-time Wigner distribution for time-frequency signal analysis,” Proc. of ICASSP’82. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 3-5 May 1982, Paris, France (IEEE, 1982), pp. 1333–1336. DOI: 10.1109/ICASSP.1982.1171451.

    Chapter  Google Scholar 

  7. H. Hu, “Time-frequency DOA estimate algorithm based on SPWVD,” Proc. of 2005 IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 8-12 Aug. 2005, Beijing, China (IEEE, 2005), Vol. 2, pp. 1253–1256. DOI: 10.1109/mape.2005.1618151.

    Google Scholar 

  8. O. Y. Sorokin, “Increase of efficiency of spread spectrum radio signals application in communication systems,” Radioelectron. Commun. Syst.55, No. 1, 38 (2012). DOI: 10.3103/S0735272712010062.

    Article  Google Scholar 

  9. B. Barkat, B. Boashash, “A high-resolution quadratic time-frequency distribution for multicomponent signals analysis,” IEEE Trans. Signal Processing49, No. 10, 2232 (2001). DOI: 10.1109/78.950779.

    Article  Google Scholar 

  10. A. P. Gvozdak, “Detection of nonstationary components of signals with the use of distributions based on kernels with affine transforms,” Radioelectron. Commun. Syst.48, No. 8, 31 (2005). URI: http://radioelektronika.org/article/view/S0735272705080066.

    Google Scholar 

  11. W. Martin, P. Flandrin, “Wigner-Ville spectral analysis of nonstationary processes,” IEEE Trans. Acoustics, Speech, and Signal Processing33, No. 6, 1461 (1985). DOI: 10.1109/TASSP.1985.1164760.

    Article  Google Scholar 

  12. H.-L. Chan, H.-H. Huang, J.-L. Lin, “Time-frequency analysis of heart rate variability during transient segments,” Annals Biomedical Engineering29, No. 11, 983 (Nov. 2001). DOI: 10.1114/1.1415525.

    Article  Google Scholar 

  13. H. Hang, “Time-frequency DOA estimation based on Radon-Wigner transform,” Proc. of 2006 8th Int. Conf. on Signal Processing, 16-20 Nov. 2006, Beijing, China (IEEE, 2006), p. 1. DOI: 10.1109/ICOSP.2006.344553.

    Google Scholar 

  14. M. Amirmazlaghani, H. Amindavar, “Modeling and denoising Wigner-Ville distribution,” Proc. of 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 4–7 Jan. 2009, Marco Island, USA (IEEE, 2009), pp. 530–534. DOI: 10.1109/DSP.2009.4785980.

    Chapter  Google Scholar 

  15. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. Royal Soc. A - Math. Phys. Engineering Sci.454, No. 1971, 903 (Mar. 1998). DOI: 10.1098/rspa. 1998.0193.

    Article  MathSciNet  Google Scholar 

  16. B. L. Cheng, A. N. Kubrak, “Modernized method of estimating the parameters of LFM signals based on the time-frequency distribution correction and the use of the Hough transformation,” Radioelectron. Commun. Syst.52, No. 6, 295 (2009). DOI: 10.3103/S0735272709060028.

    Article  Google Scholar 

  17. J. D. Zheng, J. S. Cheng, Y. Yang, “Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing,” Signal Processing96, Part B, 362 (Mar. 2014). DOI: 10.1016/j.sigpro. 2013.09.013.

    Article  Google Scholar 

  18. H. Quan, Z. Liu, X. Shi, “A new processing method for the end effect problem of empirical mode decomposition,” Proc. of 2010 3rd Int. Congress on Image and Signal Processing, 16–18 Oct. 2010, Yantai, China (IEEE, 2010), pp. 3391–3394. DOI: 10.1109/CISP.2010.5647347.

    Chapter  Google Scholar 

  19. P. Y. Kovalenko, D. I. Bliznyuk, A. S. Berdin, “Improved extrema detection algorithm for the generalized empirical mode decomposition,” Proc. of 2nd Int. Conf. on Industrial Engineering, Applications and Manufacturing, ICIEAM, 19–20 May 2016, Chelyabinsk, Russia (IEEE, 2016), pp. 1–5. DOI: 10.1109/ICIEAM. 2016.7911546.

    Google Scholar 

  20. Peng Wang, Guo-chu Chen, Yu-fa Xu, Jin-shou Yu, “Improved empirical mode decomposition and its application to wind power forecasting,” Control Engineering China18, No. 4, 588 (2011). URI: https://caod.oriprobe.com/articles/28044593/Improved_Empirical_Mode_Decomposition_and_its_Appl.htm.

    Google Scholar 

  21. Zhi-meng Zhang, Chen-chen Liu, Bo-sheng Liu, Bao-jing Tian, “Simulation analysis of envelops fitting algorithms in EMD,” J. System Simulation21, No. 23, 7690 (2009). URI: http://caod.oriprobe.com/articles/38656675/jing_yan_mo_tai_fen_jie_zhong_de_bao_luo_xian_ni_he_suan_fa_fang_zhen_.htm.

    Google Scholar 

  22. O. V. Lazorenko, L. F. Chernogor, “System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid,” Radioelectron. Commun. Syst.60, No. 8, 331 (2017). DOI: 10.3103/S0735272717080015.

    Article  Google Scholar 

  23. M. Svoboda, L. Matiu-Iovan, F. M. Frigura-Iliasa, P. Andea, “B-spline interpolation technique for digital signal processing,” Proc. of 2015 Int. Conf. on Information and Digital Technologies, 7–9 Jul. 2015, Zilina, Slovakia (IEEE, 2015), pp. 366-371. DOI: 10.1109/DT.2015.7222998.

    Google Scholar 

  24. Q. Chen, N. Huang, S. Riemenschneider, Y. Xu, “A B-spline approach for empirical mode decompositions,” Adv. Comput. Math.24, No. 1-4, 171 (2006). DOI: 10.1007/s10444-004-7614-3.

    Article  MathSciNet  Google Scholar 

  25. J. H. Shixi Yang, Zhaotong Wu, et al. “Study of empirical mode decomposition based on high-order spline interpolation,” J. Zhejiang University: Engineering Sci.38, No. 3, 267 (2004).

    Google Scholar 

  26. H. Ding, J. Lv, “Comparison study of two commonly used methods for envelope fitting of empirical mode decomposition,” Proc. of 2012 5th Int. Congress on Image and Signal Processing, 16–18 Oct. 2012, Chongqing, China (IEEE, 2012), pp. 1875–1878. DOI: 10.1109/CISP.2012.6469862.

    Chapter  Google Scholar 

  27. D. J. Huang, J. P. Zhao, J. L. Su, “Practical implementation of Hilbert-Huang Transform algorithm,” Acta Oceanologica Sinica22, No. 1, 1 (2003). URI: http://www.hyxb.org.cn/aoscn/ch/reader/view_abstract.aspx?file_no=20030101&flag=1.

    Google Scholar 

  28. N. E. Huang, Z. Shen, S. R. Long, “A new view of nonlinear water waves: The Hilbert spectrum,” Annual Review Fluid Mech.31, 417 (1999). DOI: 10.1146/annurev.fluid.31.1.417.

    Article  MathSciNet  Google Scholar 

  29. R. Deering, J. F. Kaiser, “The use of a masking signal to improve empirical mode decomposition,” Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 23 Mar. 2005, Philadelphia, USA (IEEE, 2005), Vol. 4, pp. iv/485-iv/488. DOI: 10.1109/ICASSP.2005.1416051.

    Google Scholar 

  30. Y. Gao, G. Ge, Z. Sheng, E. Sang, “Analysis and solution to the mode mixing phenomenon in EMD,” Proc. of 200. Congress on Image and Signal Processing, 27–30 May 2008, Sanya, Hainan, China (IEEE, 2008), pp. 223–227. DOI: 10.1109/CISP.2008.193.

    Google Scholar 

  31. Z. Wu, N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Advances in Adaptive Data Analysis01, No. 01, 1 (2009). DOI: 10.1142/s1793536909000047.

    Article  Google Scholar 

  32. N. Senroy, S. Suryanarayanan, P. F. Ribeiro, “An improved Hilbert-Huang method for analysis of time-varying waveforms in power quality,” IEEE Trans. Power Systems22, No. 4, 1843 (Nov. 2007). DOI: 10.1109/tpwrs. 2007.907542.

    Article  Google Scholar 

  33. N. E. Huang, M.-L. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. of Royal Soc. A - Math. Phys. Eng. Sci.459, No. 2037, 2317 (Sep. 8 2003). DOI: 10.1098/rspa.2003.1123.

    Article  MathSciNet  Google Scholar 

  34. N. Stevenson, M. Mesbah, B. Boashash, “A sampling limit for the empirical mode decomposition,” Proc. of Eighth Int. Symp. on Signal Processing and Its Applications, 28–31 Aug. 2005, Sydney, Australia (IEEE, 2005), pp. 647–650. DOI: 10.1109/ISSPA.2005.1581021.

    Google Scholar 

  35. G. Rilling, P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Processing56, No. 1, 85 (Jan. 2008). DOI: 10.1109/Tsp.2007.906771.

    Article  MathSciNet  Google Scholar 

  36. B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications,” Proc. IEEE80, No. 4, 540 (1992). DOI: 10.1109/5.135378.

    Article  Google Scholar 

  37. J.-C. Cexus, A.-O. Boudraa, “Nonstationary signals analysis by Teager-Huang Transform (THT),” Proc. of 14th European Signal Processing Conf., 4–8 Sept. 2006, Florence, Italy (IEEE, 2006), pp. 1–5. URI: https://ieeexplore.ieee.org/document/7071680.

    Google Scholar 

  38. S. Benramdane, J. C. Cexus, A. O. Boudraa, J.-A. Astolfi, “Time-frequency analysis of pressure fluctuations on a hydrofoil undergoing a transient pitching motion using Hilbert-Huang and Teager-Huang transforms,” Proc. of Asme Pressure Vessels and Piping Conf., 22–26 Jul. 2007, San Antonio, USA (IEEE, 2008), Vol. 4: Fluid-Structure Interaction, pp. 199–207. DOI: 10.1115/PVP2007-26632.

    Google Scholar 

  39. M. F. Kaleem, L. Sugavaneswaran, A. Guergachi, S. Krishnan, “Application of empirical mode decomposition and Teager energy operator to EEG signals for mental task classification,” Proc. of 2010 Annual Int. Conf. of IEEE Engineering in Medicine and Biology, 31 Aug.-4 Sept. 2010, Buenos Aires, Argentina (IEEE, 2010), pp. 4590–4593. DOI: 10.1109/IEMBS.2010.5626501.

    Chapter  Google Scholar 

  40. J. Guo, S. Qin, C. Zhu, “The application of energy operator demodulation approach based on EMD in mechanical system identification,” Proc. of 19th Int. Conf. on Mechatronics and Machine Vision in Practice, M2VIP, 28–30 Nov. 2012, Auckland, New Zealand (IEEE, 2012), pp. 80–85. URI: https://ieeexplore.ieee.org/document/6484571.

    Google Scholar 

  41. H. Li, H. Zheng, L. Tang, “Gear fault diagnosis based on order tracking and Hilbert-Huang transform,” Proc. of 2009 Sixth Int. Conf. on Fuzzy Systems and Knowledge Discovery, 14–16 Aug. 2009, Tianjin, China (IEEE, 2009), pp. 468–472. DOI: 10.1109/FSKD.2009.220.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqin Zhao.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional Information

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347019090036 with DOI: 10.20535/S0021347019090036.

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 9, pp. 550–562.

This work was supported by the National Natural Science Foundation of China under Grant No. 61671185.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhang, Y., Zhao, Y. et al. Mode Mixing Suppression Algorithm for Empirical Mode Decomposition Based on Self-Filtering Method. Radioelectron.Commun.Syst. 62, 462–473 (2019). https://doi.org/10.3103/S0735272719090036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719090036

Navigation