Skip to main content
Log in

Algorithm for Transforming Antenna Electromagnetic Near-Field Measured on Spherical Surface into Far-Field Based on Direct Calculation of Stratton and Chu Formulas

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This study examines the possibility of direct calculation of vector forms of Kirchhoff’s integral in algorithms of electromagnetic near-field to far-field transformation of antenna harmonic radiation. A simple algorithm based on the integral derived from the Stratton and Chu formulas is proposed for the spherical scanning scheme of electromagnetic near-field. Method errors of the proposed algorithm stipulated by the assumptions made in the process of its derivation are investigated by mathematical simulation. The total error is estimated in experiments on reconstruction of antenna amplitude radiation patterns. For comparison, the results of the classical algorithm performance based on electric field expansion in terms of spherical modes are presented in all experiments. It has been shown that the accuracy of the proposed algorithm in comparison with the classical algorithm is not inferior, the programming complexity is lower, while the execution speed is higher on condition of the reconstruction of radiation pattern only in principal sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Potekhin, Certain Problems of Electromagnetic Wave Diffraction [in Russian] (Sov. Radio, Moscow, 1948).

    Google Scholar 

  2. A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, No. 1, 30 (1986). DOI: https://doi.org/10.1109/TAP.1986.1143727.

    Article  Google Scholar 

  3. B. Boesman, D. Pissoort, G. Gielen, G. A. E. Vandenbosch, “Fast and efficient near-field to near-field and near-field to far-field transformation based on the spherical wave expansion,” Proc. of IEEE Int. Symp. on Electromagnetic Compatibility, EMC, 16–22 Aug. 2015, Dresden, Germany (IEEE, 2015), pp. 529–534. DOI: https://doi.org/10.1109/ISEMC.2015.7256218.

    Google Scholar 

  4. Francesco D’Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, “Two effective approaches to correct the positioning errors in a spherical near-field-far-field transformation,” Electromagnetics 36, No. 2, 78 (2016). DOI: https://doi.org/10.1080/02726343.2016.1136018.

    Article  Google Scholar 

  5. Ole Neitz, Raimund A. M. Mauermayer, Yvonne Weitsch, Thomas F. Eibert, “A propagating plane-wave-based near-field transmission equation for antenna gain determination from irregular measurement samples,” IEEE Trans. Antennas Propag. 65, No. 8, 4230 (2017). DOI: https://doi.org/10.1109/TAP.2017.2712180.

    Article  Google Scholar 

  6. R. Cornelius, D. Heberling, “Spherical wave expansion with arbitrary origin for near-field antenna measurements,” IEEE Trans. Antennas Propag. 65, No. 8, 4385 (2017). DOI: https://doi.org/10.1109/TAP.2017.2708099.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. A. M. Mauermayer, T. F. Eibert, “Spherical field transformation above perfectly electrically conducting ground planes,” IEEE Trans. Antennas Propag. 66, No. 3, 1465 (2018). DOI: https://doi.org/10.1109/TAP.2018.2794406.

    Article  Google Scholar 

  8. G. D’elia, G. Leone, R. Pierri, G. Schirinzi, “New method of far-field reconstruction from Fresnel field,” Electron. Lett. 20, No. 8, 342 (1984). DOI: https://doi.org/10.1049/el:19840232.

    Article  Google Scholar 

  9. P. Petre, T. K. Sarkar, “A planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE Antennas Propag. Soc. Int. Symp. Dig., 18–25 Jul. 1992, Chicago, USA (IEEE, 1992), pp. 1534–1537. DOI: https://doi.org/10.1109/APS.1992.221746.

    Google Scholar 

  10. Ryo Yamaguchi, Yasuko Kimura, Kazuhiro Komiya, Keizo Cho, “A far-field measurement method for large size antenna by using synthetic aperture antenna,” Proc. of 3rd European Conf. on Antennas and Propagation, 23–27 Mar. 2009, Berlin, Germany (IEEE, 2009), pp. 1730–1733. URI: https://ieeexplore.ieee.org/document/5067950.

    Google Scholar 

  11. J. L. A. Quijano, G. Vecchi, “Field and source equivalence in source reconstruction on 3D surfaces,” PIER 103, 67 (2010). DOI: https://doi.org/10.2528/PIER10030309.

    Article  Google Scholar 

  12. Yu. V. Krivosheev, A. V. Shishlov, A. K. Tobolev, I. L. Vilenko, “Fresnel field to far field transformation using sparse field samples,” Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, 28–30 Aug. 2012, Kyiv, Ukraine (IEEE, 2012), pp. 237–242. DOI: https://doi.org/10.1109/MMET.2012.6331237.

    Google Scholar 

  13. T. F. Eibert, E. Kilic, C. Lopez, R. A. M. Mauermayer, O. Neitz, G. Schnattinger, “Electromagnetic field transformations for measurements and simulations,” PIER 151, 127 (2015). DOI: https://doi.org/10.2528/PIER14121105.

    Article  Google Scholar 

  14. T. F. Eibert, D. Vojvodić, T. B. Hansen, “Fast inverse equivalent source solutions with directive sources,” IEEE Trans. Antennas Propag. 64, No. 11, 4713 (2016). DOI: https://doi.org/10.1109/TAP.2016.2606405.

    Article  Google Scholar 

  15. A. Paulus, J. Knapp, T. F. Eibert, “Phaseless near-field far-field transformation utilizing combinations of probe signals,” IEEE Trans. Antennas Propag. 65, No. 10, 5492 (2017). DOI: https://doi.org/10.1109/TAP.2017.2735463.

    Article  Google Scholar 

  16. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE, 1994).

    MATH  Google Scholar 

  17. L. D. Bakhrakh, Yu. A. Kolosov, and A. P. Kurochkin, “Determination of antenna far-field from the values of near-field,” Antenny, No. 24, 3 (1976).

  18. S. Silver, Microwave Antenna Theory and Design, Book 19 (IET, 1984). DOI: https://doi.org/10.1049/PBEW019E.

    Book  Google Scholar 

  19. J. Brown, “A theoretical analysis of some errors in aerial measurements,” Proc. IEE — Part C: Monographs 105, No. 8, 343 (1958). DOI: https://doi.org/10.1049/pi-c.1958.0044.

    Google Scholar 

  20. Jeong-Seok Lee, Tae-Lim Song, Jin-Kyoung Du, Tae-Wan Koo, Jong-Gwan Yook, “A study on near-field to far-field transformation using Stratton-Chu formula,” J. Korean Institute Electromagnetic Eng. Sci. 24, No. 3, 316 (2013). DOI: https://doi.org/10.5515/KJKIEES.2013.24.3.316.

    Article  Google Scholar 

  21. Yu Ding, Yang Lin, Fu De-Min, Liu Qi-Zhong, “Analysis and simulation of system phase errors in planar near-field measurements on ultra-low sidelobe antennas,” Proc. of IEEE Int. Conf. on Ultra-Wideband, 20–23 Sept. 2010, Nanjing, China (IEEE, 2010), vol. 1, pp. 1–4. DOI: https://doi.org/10.1109/ICUWB.2010.5614371.

    Google Scholar 

  22. http://www.skard.ru/?page_id=5038.

  23. W. C. Gibson, The Method of Moments in Electromagnetics, 2nd ed. (CRC Press, 2014). URI: https://www.crcpress.com/The-Method-of-Moments-in-Electromagnetics/Gibson/p/book/9781482235791.

    Book  Google Scholar 

  24. L. D. Bakhrakh, S. D. Kremenetskii, A. P. Kurochkin, et al., Methods of Parametric Measurements of Radiating System in Near-Field [in Russian] (Nauka, Leningrad, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Anyutin, K. I. Kurbatov, I. M. Malay or M. A. Ozerov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anyutin, N.V., Kurbatov, K.I., Malay, I.M. et al. Algorithm for Transforming Antenna Electromagnetic Near-Field Measured on Spherical Surface into Far-Field Based on Direct Calculation of Stratton and Chu Formulas. Radioelectron.Commun.Syst. 62, 109–118 (2019). https://doi.org/10.3103/S0735272719030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719030026

Navigation