Skip to main content
Log in

Sub-Nyquist Sampling and Parameters Estimation of Wideband LFM Signals Based on FRFT

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Last years, most sub-Nyquist sampling and parameters estimation methods for linear frequency modulated (LFM) signals are based on compressed sensing (CS) theory. However, nearly all CS reconstruction algorithms are with high computational complexity and difficult to be implemented in hardware. In this paper, a novel framework of sub-Nyquist sampling and low-complexity parameters estimation for LFM signals is proposed. The incoherent sampling in CS theory is introduced into the construction of sub-Nyquist sampling system, but no CS reconstruction algorithm is employed in the estimation of parameters. Based on the energy aggregation of LFM signals in the proper fractional Fourier transform (FRFT) domain, the chirp rate and center frequency can be estimated by linear operations. Accordingly, the proposed estimation method is easily realized compared with existing estimation methods based on CS. Simulation results verify its effectiveness and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, No. 4, 1289 (Apr. 2006). DOI: 10.1109/TIT. 2006.871582.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. J. Candes, M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Mag. 25, No. 2, 21 (Mar. 2008). DOI: 10.1109/MSP.2007.914731.

    Article  Google Scholar 

  3. M. A. Davenport, P. T. Boufounos, M. B. Wakin, Richard G. Baraniuk, “Signal processing with compressive measurements,” IEEE J. Selected Topics Signal Processing 4, No. 2, 445 (Apr. 2010). DOI: 10.1109/JSTSP. 2009.2039178.

    Article  Google Scholar 

  4. Zha Song, Liu Peiguo, Huang Jijun, “Parameter estimation of LFM signal via compressive sensing,” Proc. of IET Int. Radar Conf., 14–16 Apr. 2013, Xi’an, China (IEEE, 2013), pp. 1–5. 10.1049/cp.2013.0315.

    Google Scholar 

  5. M. Joneidi, A. Zaeemzadeh, S. Rezaeifar, Mahdi Abavisani, Nazanin Rahnavard, “LFM signal detection and estimation based on sparse representation,” Proc. of 49th Annual Conf. on Information Sciences and Systems, 18–20 Mar. 2015, Baltimore, MD, USA (IEEE, 2015), pp. 1–5. DOI: 10.1109/CISS.2015.7086856.

    Google Scholar 

  6. Z. Yang, W. Z. Cheng, “DOA estimation of LFM signals based on compressed sensing,” Application Research Computers 26, No. 12, 4642 (Dec. 2009). DOI: 0.3969/j.issn.1001-3695.2009.12.067.

    Google Scholar 

  7. Bing Liu, Ping Fu, Cong Xu, Jian-xin Gai, “Parameter estimation of LFM signal with compressive measurements,” J. Convergence Inf. Technol. 6, No. 3, 303 (Mar. 2011). DOI: 10.4156/jcit.vol6.issue3.35.

    Article  Google Scholar 

  8. K. Wang, W. Ye, G. Lao, Y. Wang, “Fast algorithm on parameter estimation of wideband LFM signal based on down-chirp and CS,” Proc. of IEEE Int. Conf. on Signal Processing, Communications and Computing, 5–8 Aug. 2014, Guilin, China (IEEE, 2014), pp. 133–136. DOI: 10.1109/ICSPCC.2014.6986168.

    Google Scholar 

  9. H. Yan, C. Dong, G. Zhao, “Parameter estimation of LFM signal based on compressed sensing,” Chinese J. Radio Science 30, No. 3, 449 (June 2015). DOI: 10.13443/j.cjors.2014070103.

    Google Scholar 

  10. J. A. Tropp, J. N. Laska, M. F. Duarte, Justin K. Romberg, Richard G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56, No. 1, 520 (Jan. 2010). DOI: 10.1109/TIT. 2009.2034811.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Processing 42, No. 11, 3084 (Nov. 1994). DOI: 10.1109/78.330368.

    Article  Google Scholar 

  12. S.-C. Pei, J.-J. Ding, “Closed-form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Processing 48, No. 5, 1338 (May 2000). DOI: 10.1109/78.839981.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Fang, G. Huang, J. Gao, “Sub-Nyquist sampling and reconstruction model of LFM signals based on blind compressed sensing in FRFT domain,” Circuits, Systems, and Signal Processing 34, No. 2, 419 (Feb. 2015). DOI: 10.1007/s00034-014-9859-5.

    Article  MATH  Google Scholar 

  14. H. Wang, L. Qi, F. Zhang, N. Zheng, “Parameters estimation of the LFM signal based on the optimum seeking method and fractional Fourier transform,” Proc. of Int. Conf. on Transportation, Mechanical, and Electrical Engineering, 16–18 Dec. 2011, Changchun, China (IEEE, 2011), pp. 2331–2334. DOI: 10.1109/TMEE.2011. 6199687.

    Google Scholar 

  15. S.-C. Pei, M.-H. Yeh, C.-C. Tseng, “Discrete fractional Fourier transform based on orthogonal projections,” IEEE Trans. Signal Processing 47, No. 5, 1335 (May 1999). DOI: 10.1109/78.757221.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, P. K. Meher, “FPGA implementation of orthogonal matching pursuit for compressive sensing reconstruction,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 23, No. 10, 2209 (Oct. 2015). DOI: 10.1109/TVLSI.2014.2358716.

    Article  Google Scholar 

  17. Z. Chen, X. Hou, C. Gong, X. Qian, “Compressive sensing reconstruction for compressible signal based on projection replacement,” Multimedia Tools and Applications 75, No. 5, 2565 (Mar. 2016). DOI: 10.1007/s11042-015-2578-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningfei Dong.

Additional information

Original Russian Text © N. Dong, J. Wang, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 8, pp. 431–441.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, N., Wang, J. Sub-Nyquist Sampling and Parameters Estimation of Wideband LFM Signals Based on FRFT. Radioelectron.Commun.Syst. 61, 333–341 (2018). https://doi.org/10.3103/S0735272718080010

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272718080010

Navigation