Skip to main content
Log in

Interaction Features of Stepped-Impedance Stripline Resonators in Comb Filters

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Mixed coefficients of coupling between the closely spaced stepped-impedance resonators in comb filters of stripline design have been investigated. Transmission zeros at frequencies f zi correspond to mixed coupling coefficients k i . These zeros can be moved with respect to the filter passband central frequency f0 by modifying the shape of resonators. It was proved that the reduction of gap between resonators made it possible to locate frequencies f z and f0 closer to one another. The existing restrictions on the minimal value of gap between resonators limit the degree of proximity between f z and f0. The N-resonator stripline comb filters with mixed coupling can have N−1 transmission zeros. The absence of cross-coupling links in stripline filters simplifies their construction. It has been established that the thickness of central conductors of stripline resonators affects the positive and negative mixed coupling coefficients. The paper presents measurement data of miniature stripline three-resonator comb filter having an enhanced selectivity at the expense of two transmission zeros. The central frequency of filter is f0 = 1850 MHz, the bandwidth BW = 100 MHz. The filter having dimensions 5.8×4.2×2 mm was implemented by connecting two ceramic substrates having relative dielectric permittivity ε r = 92 and the metallized patterns deposited on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (Artech House, 1980).

    Google Scholar 

  2. J.-S. Hong, Microstrip Filters for RF/Microwave Application, 2nd ed. (John Wiley & Sons, Inc., 2011).

    Book  Google Scholar 

  3. A. V. Zakharov, M. Ye. Ilchenko, V. Ya. Karnauh, L. S. Pinchuk, “Tunable microstrip resonators with ferroelectric capacitors,” Radioelectron. Commun. Syst. 53, No. 8, 418 (2010). DOI: 10.3103/S0735272710080042.

    Article  Google Scholar 

  4. A. V. Zakharov, M. E. Il’chenko, V. Ya. Karnaukh, L. S. Pinchuk, “Quality of ferroelectric capacitors used in tunable microwave filters,” J. Commun. Technol. Electron. 56, No. 8, 1020 (2011). DOI: 10.1134/S1064226911050147.

    Article  Google Scholar 

  5. M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication (Springer Science & Business Media, 2001).

    Book  Google Scholar 

  6. L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microwave Mag. 9, No. 5, 118 (Oct. 2008). DOI: 10.1109/MMM.2008.927634.

    Article  Google Scholar 

  7. F. Zhu, W. Hong, J.-X. Chen, K. Wu, “Quarter-wavelength stepped-impedance resonator filter with mixed electric and magnetic coupling,” IEEE Microwave Wireless Components Lett. 24, No. 2, 90 (Feb. 2014). DOI: 10.1109/LMWC.2013.2290225.

    Article  Google Scholar 

  8. A. V. Zakharov, M. E. Il’chenko, V. N. Korpach, “Features of the coupling coefficients of planar stepped-impedance resonators at higher resonance frequencies and application of such resonators for suppression of spurious passbands,” J. Commun. Technol. Electron. 59, No. 6, 550 (2014). DOI: 10.1134/S1064226914060217.

    Article  Google Scholar 

  9. R. J. Cameron, “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microwave Theory Tech. 47, No. 4, 433 (Apr. 1999). DOI: 10.1109/22.754877.

    Article  Google Scholar 

  10. J. B. Thomas, “Cross-coupling in coaxial cavity filters–a tutorial overview,” IEEE Trans. Microwave Theory Tech. 51, No. 4, 1368 (Apr. 2003). DOI: 10.1109/TMTT.2003.809180.

    Article  Google Scholar 

  11. S. Zhang, L. Zhu, R. Li, “Compact quadruplet bandpass filter based on alternative J/K inverters and λ/4 resonators,” IEEE Microwave Wireless Compon. Lett. 22, No. 5, 224 (May 2012). DOI: 10.1109/LMWC.2012.2193124.

    Article  Google Scholar 

  12. H. Wang, Q.-X. Chu, “An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling,” IEEE Trans. Microwave Theory Tech. 57, No. 3, 667 (2009). DOI: 10.1109/TMTT.2009.2013290.

    Article  Google Scholar 

  13. C.-W. Tang, S.-F. You, “Design metodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microwave Theory Tech. 54, No. 2, 717 (Feb. 2006). DOI: 10.1109/TMTT.2005.862638.

    Article  Google Scholar 

  14. K. Ma, J.-G. Ma, K. S. Yeo, M. A. Do, “A compact size coupling controllable filter with separate electric and magnetic coupling paths,” IEEE Trans. Microwave Theory Tech. 54, No. 3, 1113 (Mar. 2006). DOI: 10.1109/TMTT.2005.864118.

    Article  Google Scholar 

  15. Q.-X. Chu, H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microwave Theory Tech. 56, No. 2, 431 (Feb. 2008). DOI: 10.1109/TMTT.2007.914642.

    Article  Google Scholar 

  16. S. Zhang, L. Zhu, R. Weerasekera, “Synthesis of inline mixed coupled quasi-elliptic bandpass filters based on λ/4 resonators,” IEEE Trans. Microwave Theory Tech. 63, No. 10, 3487 (Oct. 2015). DOI: 10.1109/TMTT.2015.2467380.

    Article  Google Scholar 

  17. A. V. Zakharov, “Stripline combline filters on substrates designed on high-permittivity ceramic materials,” J. Commun. Technol. Electron. 58, No. 3, 265 (2013). DOI: 10.1134/S1064226913030145.

    Article  Google Scholar 

  18. A. V. Zakharov, M. Ye. Ilchenko, L. S. Pinchuk, “Coupling coefficient of quarter-wave resonators as a function of parameters of comb stripline filters,” Radioelectron. Commun. Syst. 58, No. 6, 284 (2015). DOI: 10.3103/S0735272715060060.

    Article  Google Scholar 

  19. A. V. Zakharov, M. E. Il’chenko, “Pseudocombline bandpass filters based on half-wave resonators manufactured from sections of balanced striplines,” J. Commun. Technol. Electron. 60, No. 7, 801 (2015). DOI: 10.1134/S1064226915060182.

    Article  Google Scholar 

  20. A. V. Zakharov, M. Ye. Ilchenko, L. S. Pinchuk, “Coupling coefficients of step-impedance resonators in stripeline band-pass filters of array type,” Radioelectron. Commun. Syst. 57, No. 5, 217 (2014). DOI: 10.3103/S0735272714050045.

    Article  Google Scholar 

  21. V. I. Vol’man (ed.), Reference Book on Calculation and Designing of Microwave Stripline Devices [in Russian] (Radio i Svyaz’, Moscow, 1982).

    Google Scholar 

  22. A. L. Fel’dshtein (ed.), Reference Book on Elements of Microstrip Technology [in Russian] (Svyaz’, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Additional information

Original Russian Text © A.V. Zakharov, M.Ye. Ilchenko, L.S. Pinchuk, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 1, pp. 33–46.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V., Ilchenko, M.Y. & Pinchuk, L.S. Interaction Features of Stepped-Impedance Stripline Resonators in Comb Filters. Radioelectron.Commun.Syst. 61, 22–31 (2018). https://doi.org/10.3103/S073527271801003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527271801003X

Navigation