Skip to main content
Log in

Estimation of the energy spectrums of reflections in pulse doppler weather radars. Part 1. Modifications of the spectral estimation algorithms

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This is the first paper in a series of papers devoted to the peculiarities of estimation of the continuous energy spectra of random processes of different nature, which are defined by their samples at discrete moments of time. In the paper we consider two kinds of the generalized spectrum analyzers (GSA), whose structure fits the majority of classical (nonparametric) and modern noneigenstructured spectral estimation (SE) methods. It has been demonstrated that a number of known superresolution SE methods may be considered as particular cases of parametric GSA based on whitening or inversing filters of the input process. We focus on the autoregressive models of analyzed processes with continuous energy spectrums, for which the whitening or inversing filters are the transversal filters of various structures with proper parameters. The utilized interpretation allows one to modify the well-known superresolution SE methods for the problem of continuous spectrums reconstruction and, what is more important, to establish their new varieties with practically useful properties, that are going to be explored in the following two papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Bazlova, N. V. Bocharnikov, G. B. Brylev, et al. Meteorological Automated Radar Networks (Gidrometeoizdat, St. Petersburg, 2002) [in Russian, ed. by G. B. Brylev].

    Google Scholar 

  2. A. V. Ryzhkov, “Characteristics of meteorological radar stations,” Zarubezhnaya Radioelektronika, No. 4, 29 (1993).

    Google Scholar 

  3. V. M. Melnikov, “Information processing in Doppler weather radars,” Zarubezhnaya Radioelektronika, No. 4, 35 (1993).

    Google Scholar 

  4. M. E. Weber, “Advances in operational weather radar technology,” Lincoln Laboratory J. 16, No. 1, 9 (2006), https://wwwllmitedu/publications/journal/pdf/vol16_no1/16_1_2Weberpdf.

    Google Scholar 

  5. R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic Press, Orlando, 1975).

    Google Scholar 

  6. E. A. Robinson, “A historical perspective of spectrum estimation,” Proc. IEEE 70, No. 9, 885 (Sept. 1982), DOI: 10.1109/PROC.1982.12423.

    Article  Google Scholar 

  7. G. M. Jenkins, D. G. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).

    MATH  Google Scholar 

  8. G. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control (Holden-Day, San Francisco, 1970).

    MATH  Google Scholar 

  9. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions (Springer-Verlag, New York, 1987).

    Google Scholar 

  10. V. V. Karavayev, V. V. Sazonov, Statistical Theory of Passive Location (Radio i Svyaz’, Moscow, 1987) [in Russian].

    Google Scholar 

  11. E. T. Jaynes, “On the rationale of maximum-entropy methods,” Proc. IEEE 70, No. 9, 939 (Sept. 1982), DOI: 10.1109/PROC.1982.12425.

    Article  Google Scholar 

  12. S. L. Marple Digital Spectral Analysis: with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987).

    Google Scholar 

  13. P. Stoica, R. Moses, Introduction to Spectral Analysis (Prentice-Hall, Upper Saddle River, NJ, 1997).

    MATH  Google Scholar 

  14. H. Krim, M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE SP Magazine (Signal Processing) 13, No. 4, 67 (Jul. 1996), DOI:10.1109/79.526899.

    Article  Google Scholar 

  15. Ya. D. Shirman, V. N. Manzhos, D. I. Lekhovytskiy, “Certain stages of development and problems of theory and techniques of resolution of radar signals,” Radiotekhnika, No. 1, 31 (1997).

    Google Scholar 

  16. Radioelectronic Systems: Design Foundations and Theory, 2nd ed. (Radiotekhnika, Moscow, 2007) [in Russian, ed. by Ya. D. Shirman].

  17. J. P. Burg, “Maximum Entropy Spectral Analysis,” Proc. of 37th Meeting of the Society of Exploration Geophysicists, October 1967, Oklahoma City, Oklahoma, USA (Oklahoma City, 1967).

    Google Scholar 

  18. J. Capon, “High resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, No. 8, 1408 (Aug. 1969), DOI:10.1109/PROC.1969.7278.

    Article  Google Scholar 

  19. J. Capon, “Probability distributions for estimators of the frequency-wavenumber spectrum,” Proc. IEEE 58, No. 10, 1785 (Oct. 1970), DOI:10.1109/PROC.1970.8014.

  20. W. F. Gabriel, “Spectral analysis and adaptive array superresolution techniques,” Proc. IEEE 68, No. 6, 654 (June 1980), DOI:10.1109/PROC.1980.11719.

    Article  Google Scholar 

  21. J. Munier, G. Y. Delisle, “Spatial analysis in passive listening using adaptive techniques,” Proc. IEEE 75, No. 11, 1458 (Nov. 1987), DOI:10.1109/PROC.1987.13908.

  22. D. H. Johnson, “The application of spectral estimation methods to bearing estimation problems,” Proc. IEEE 70, No. 9, 1018 (Sept. 1982), DOI:10.1109/PROC.1982.12430.

  23. O. P. Cheremisin, “The efficiency of adaptive methods of interfering signals bearing,” Radiotekh. Elektron. 34, No. 9, 1850 (1989).

    Google Scholar 

  24. D. I. Lekhovytskiy, D. V. Atamanskiy, I. G. Kirillov, P. M. Flekser, “Statistical analysis of ¡®superresolution’ bearing methods of noise radiation sources in antenna arrays at finite size of training sample,” Antennas, No. 2, 23 (2000).

    Google Scholar 

  25. D. I. Lekhovytskiy, P. M. Flekser, “Statistical analysis of resolution capability of quasi-harmonic spectral estimation using Capon method,” Proc. of Int. Sci. and Tech. Conf. on Modern Radiolocation, Kyiv, Ukraine (Kyiv, 1994), Vol. 1, pp. 66–71.

    Google Scholar 

  26. D. I. Lekhovytskiy, S. B. Milovanov, V. M. Pishchuhin, P. M. Flekser, “Modified Capon algorithm for the problems of harmonic spectral analysis of spatial-time random signals,” Proc. of V All-Soviet Union School-Seminar on Designing of Automated Systems of Control and Management by Complex Objects, Oct. 1992, Tuapse, Crimea, Ukraine (1992), p. 705.

    Google Scholar 

  27. Ya. D. Shirman, “Theory of detection of desired signal on the background of Gaussian noises and arbitrary number of disturbing signals with random amplitudes and initial phases,” Radiotekh. Electron. 4, No. 12, 1176 (1959).

    Google Scholar 

  28. Ya. D. Shirman, “Statistical analysis of optimal resolution,” Radiotekh. Electron. 6, No. 8, 1237 (1961).

    Google Scholar 

  29. Ya. D. Shirman, Resolution and Compression of Signals (Sov. Radio, Moscow, 1974) [in Russian].

    Google Scholar 

  30. Benjamin Friedlander, B. A. Porat, “A general lower bound for parametric spectrum estimation,” IEEE Trans. Acoust., Speech, Signal Process. 32, No. 4, 728 (Aug. 1984), DOI:10.1109/TASSP.1984.1164392.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. I. Lekhovytskiy, G. A. Zhuga, B. M. Vovshyn, V. V. Lavrukevich, “Meteorological information extraction based on spectral and correlation analysis of reflections in pulse Doppler weather radars,” Prikladnaya Radioelektronika 6, No. 4, 491 (2007).

    Google Scholar 

  32. Simon Haykin, B. W. Currie, S. B. Kesler, “Maximum-entropy spectral analysis of radar clutter,” Proc. IEEE 70, No. 9, 953 (Sept. 1982), DOI:10.1109/PROC.1982.12426.

  33. D. I. Lekhovytskiy, I. G. Kirillov, “The simulation of clutters for pulse radars on the basis of processes of random order autoregression,” Syst. Obrob. Inf., No. 3, 90 (2008).

    Google Scholar 

  34. V. I. Tikhonov, Statistical Radio Engineering (Radio i Svyaz’, Moscow, 1966) [in Russian].

    Google Scholar 

  35. Problems of Statistical Theory of Radiolocation, Vol. 1 (Sov. Radio, Moscow, 1963) [in Russian, ed. by G. P. Tartakovskiy].

  36. J. M. B. Dias, J. M. N. Leitao, “Nonparametric estimation of mean velocity and spectral width in weather radar,” Proc. of IEEE Int. Geoscience and Remote Sensing Symp. on Quantitative Remote Sensing for Science and Applications, IGARSS’95, 10–14 July 1995, Florence, Italy (IEEE, 1995), Vol. 3, pp. 121–2125, DOI:10.1109/IGARSS.1995.524125.

    Google Scholar 

  37. V. Efremov, U. Laurukevich, I. Vylegzhanin, B. Vovshin, D. Lekhovytskiy, “Results of theoretical and experimental investigations of meteorological formations power spectrum using ¡®superresolution’ methods,” Proc. of Int. Radar Symp. IRS2009, 09–11 Sept. 2009, Hamburg, Germany (Hamburg, 2009), pp. 777–784.

  38. R. Bellman, Introduction to Matrix Analysis (Society for Industrial and Applied Mathematics, 1970).

    MATH  Google Scholar 

  39. G. Strang, Linear Algebra and Its Applications, 4th ed. (Brooks Cole, 2006).

    Google Scholar 

  40. V. V. Voevodin, Yu. A. Kuznetsov, Matrices and Calculations (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  41. Harry Dym, Israel Gohberg, “Extensions of band matrices with band inverses,” Linear Algebra Appl. 36, 1 (Mar. 1981), DOI:10.1016/0024-3795(81)90215-9.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. I. Lekhovytskiy, “Generalized Levinson algorithm and universal lattice filters,” Radiophysics and Quantum Electronics 35, No. 9, 509 (1992), DOI:10.1007/BF01044971.

    MathSciNet  Google Scholar 

  43. Y. I. Abramovich, N. K. Spencer, M. D. E. Turley, “Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models,” IEEE Trans. Signal Process. 55, No. 6, 2861 (Jun. 2007), DOI:10.1109/TSP.2007.893966.

    Article  MathSciNet  Google Scholar 

  44. D. I. Lekhovytskiy, S. B. Milovanov, I. D. Rakov, B. G. Sverdlov, “Universal adaptive lattice filters. Adaptation for a given root of the estimating correlation matrix,” Radiophysics and Quantum Electronics 35, No. 11, 621 (1992), DOI:10.1007/BF01046658.

    Google Scholar 

  45. D. I. Lekhovytskiy, D. V. Atamanskiy, I. G. Kirillov, “Modifications of ¡®superresolution’ analyzers of spatial-time spectrum of random signals based on whitening adaptive lattice filters,” Antennas 2, 40 (2000).

    Google Scholar 

  46. John Parker Burg, “The relationship between maximum entropy spectra and maximum likelihood spectra,” Geophysics 37, 375 (Apr. 1972), DOI:10.1190/1.1440265.

    Article  Google Scholar 

  47. A. B. Gershman, V. T. Yermolayev, “Connection of spectral estimations of maximal entropy and ‘thermal noise’,” Radiotekhnika, No. 9, 39 (1988).

    Google Scholar 

  48. D. G. Childers, Modern Spectral Analysis (IEEE Press, New York, 1978).

    Google Scholar 

  49. S. M. Kay, S. L. Marple, “Spectrum analysis¡ªA modern perspective,” Proc. IEEE 69, No. 11, 1380 (Nov. 1981), DOI:10.1109/PROC.1981.12184.

    Article  Google Scholar 

  50. A. Van Den Bos, “Alternative interpretation of maximum entropy spectral analysis,” IEEE Trans. Inf. Theory 17, No. 4, 493 (Jul. 1971), DOI:10.1109/TIT.1971.1054660.

    Article  Google Scholar 

  51. D. S. Rachkov, D. I. Lekhovytskiy, A. V. Semeniaka, D. V. Atamanskiy, U. U. Laurukevich, A. A. Pushkov, “Estimation of meteorological objects energy spectra in pulse Doppler weather radar,” Proc. of Int. Radar Symp. IRS2013, 19–21 June 2013, Dresden, Germany (IEEE, 2013), Vol. 2, pp. 811–817, INSPEC: 13711081.

    Google Scholar 

  52. D. S. Rachkov, A. V. Semeniaka, D. I. Lekhovytskiy, D. V. Atamanskiy, “Estimation of continuous energy spectra of random echoes in coherent pulse radar,” Proc. of IX Int. Conf. on Antenna Theory and Techniques, ICATT’2013, 16–20 Sept. 2013, Odessa, Ukraine (IEEE, 2013), pp. 319–322, DOI:10.1109/ICATT.2013. 6650764.

    Google Scholar 

  53. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1972).

    MATH  Google Scholar 

  54. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, D. V. Atamanskiy, “Parametric methods for spectrum estimation of reflections from meteorological formations,” Syst. Obrob. Inf., No. 5, 67 (2011).

    Google Scholar 

  55. David I. Lekhovytskiy, Yakov S. Shifrin, “Statistical analysis of ‘superresolving’ methods for direction-of-arrival estimation of noise radiation sources under finite size of training sample,” Signal Processing 93, No. 12, 3382 (Dec. 2013), DOI:10.1016/jsigpro.2013.03.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Lekhovytskiy.

Additional information

Original Russian Text © D.I. Lekhovytskiy, D.V. Atamanskiy, D.S. Rachkov, A.V. Semeniaka, 2015, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2015, Vol. 58, No. 12, pp. 3–30.

ORCID: 0000-0001-7519-3239

ORCID: 0000-0002-8705-8584

ORCID: 0000-0002-9329-1294

ORCID: 0000-0002-1170-6151

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekhovytskiy, D.I., Atamanskiy, D.V., Rachkov, D.S. et al. Estimation of the energy spectrums of reflections in pulse doppler weather radars. Part 1. Modifications of the spectral estimation algorithms. Radioelectron.Commun.Syst. 58, 523–550 (2015). https://doi.org/10.3103/S0735272715120018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272715120018

Keywords

Navigation