Skip to main content
Log in

FPT-Algorithm for Computing the Width of a Simplex Given by a Convex Hull

  • Published:
Moscow University Computational Mathematics and Cybernetics Aims and scope Submit manuscript

Abstract

The problem of computing the width of simplices generated by the convex hull of their integer vertices is considered. An FPT algorithm, in which the parameter is the maximum absolute value of the rank minors of the matrix consisting from the simplex vertices, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms (Springer, Switzerland, 2015).

    Book  MATH  Google Scholar 

  2. R. G. Downey and M. R. Fellows, Parameterized Complexity (Springer, New York, 1999).

    Book  MATH  Google Scholar 

  3. B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms (Springer, Berlin, 2006).

    MATH  Google Scholar 

  4. A. Schrijver, Theory of linear and integer programming (Wiley, Chichester, 1998).

    MATH  Google Scholar 

  5. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, Optimization (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  6. F. Eisenbrand, “Integer programming and algorithmic geometry of numbers,” in 50 Years of Integer Programming, Ed. by M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (Springer, New York, 2010), pp. 1958–2008.

    Google Scholar 

  7. R. E. Gomory, “On the relation between integer and non-integer solutions to linear programs,” Proc. Natl. Acad. Sci. U.S.A. 53, 260–265 (1965).

    Article  MATH  Google Scholar 

  8. R. E. Gomory, “Integer faces of a polyhedron,” Proc. Natl. Acad. Sci. U.S.A. 57, 16–18 (1967).

    Article  MATH  Google Scholar 

  9. R. E. Gomory, “Some polyhedra related to combinatorial problems,” J. Linear Algebra Appl. 2, 451–558 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. C. Hu, Integer Programming and Network Flows (Addison-Wesley, Reading, Mass, 1970).

    Google Scholar 

  11. V. N. Shevchenko, Qualitative Integral Programming Issues (Fizmatlit, Moscow, 1995) [in Russian].

    Google Scholar 

  12. S. Artmann, F. Eisenbrand, C. Glanzer, O. Timm, S. Vempala, and R. Weismantel, “A note on non-degenerate integer programs with small subdeterminants,” Operat. Res. Lett. 44, 635–639 (2016).

    Article  MATH  Google Scholar 

  13. D. V. Gribanov, D. S. Malyshev, P. M. Pardalos, and S. I. Veselov, “FPT-algorithms for some problems related to integer programming,” Comb. Optim. 35, 1128–1146 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Karmarkar, “A new polynomial time algorithm for linear programming,” Combinatorica 4, 373–391 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. G. Khachiyan, “Polynomial algorithms in linear programming,” Comput.Math. Math.Phys. 20, 53–72 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. E. Nesterov and A.S. Nemirovsky, Interior Point Polynomial Methods in Convex Programming (Soc. Ind. Appl. Math., Philadelphia, 1994).

    Book  Google Scholar 

  17. P. M. Pardalos, C. G. Han, and Y. Ye, “Interior point algorithms for solving nonlinear optimization problems,” COAL Newslett. 19, 45–54 (1991).

    Google Scholar 

  18. S. I. Veselov and A. J. Chirkov, “Integer program with bimodular matrix,” Discrete Optimiz. 6, 220–222 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Artmann, R. Weismantel, and R. Zenklusen, “A strongly polynomial algorithm for bimodular integer linear programming,” in Proceedings of 49th Annual ACM Symposium on Theory of Computing (ACM, New York, 2017), pp. 1206–1219.

    Google Scholar 

  20. V. V. Alekseev and D. Zakharova, “Independent sets in the graphs with bounded minors of the extended incidence matrix,” J. Appl. Ind. Math. 5, 14–18 (2011).

    Article  MathSciNet  Google Scholar 

  21. D. Gribanov and D. Malyshev, “The computational complexity of dominating set problems for instances with bounded minors of constraint matrices,” Discrete Optimiz. (2018, in press).

    Google Scholar 

  22. D. V. Gribanov and D. S. Malyshev, “The computational complexity of three graph problems for instances with bounded minors of constraint matrices,” Discrete Appl. Math. 227, 13–20 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. V. Gribanov and D. S. Malyshev, “The complexity of some problems on graphs with bounded minors of their constraint matrices,” Zh.Srednevolzh.Mat.Ob-va 18 (3), 19–31 (2016).

    Google Scholar 

  24. D. Malyshev, “A complexity dichotomy and a new boundary class for the dominating set problem,” J. Combin. Optimiz. 32, 226–243 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Malyshev, “A dichotomy for the dominating set problem for classes defined by small forbidden induced subgraphs,” Discrete Appl. Math. 203, 117–126 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Malyshev and P.M. Pardalos, “Critical hereditary graph classes: a survey,” Optimiz. Lett. 10, 1593–1612 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Malyshev and P. M. Pardalos, “The clique problem for graphs with a few eigenvalues of the same sign,” Optimiz. Lett. 9, 839–843 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. D. S. Malyshev, “Critical elements in combinatorially closed families of classes of graphs,” Diskret. Anal. Issled. Operatsii 24 (1), 81–96 (2017).

    MATH  Google Scholar 

  29. D. S. Malyshev, “Critical classes of graphs for the edge list ranking problem,” Diskret. Anal. Issled. Operatsii 20 (6), 59–76 (2013).

    MATH  Google Scholar 

  30. F. Eisenbrand, “Fast Integer Programming in Fixed Dimension,” Lect.Notes Comput.Sci. 2832, 196–207 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Dadush, “Integer programming, lattice algorithms, and deterministic volume estimation,” PhD Thesis (Georgia Inst. Technol., Ann Arbor, MI, 2012).

    MATH  Google Scholar 

  32. S. Heinz, “Complexity of integer quasiconvex polynomial optimization,” J. Complexity 21, 543–556 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Hildebrand and M. Köppe, “A new lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2O(n log n),” Discrete Optimiz. 10, 69–84 (2013).

    Article  MATH  Google Scholar 

  34. H. W. Lenstra, “Integer programming with a fixed number of variables,” Math. Operations Res. 8, 538–548 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Sebö, “An introduction to empty lattice simplicies,” Lect.Notes Comput.Sci. 1610, 400–414 (1999).

    Article  MATH  Google Scholar 

  36. D. V. Gribanov and A. J. Chirkov, “The width and integer optimization on simplices with bounded minors of the constraint matrices,” Optimiz. Lett. 10, 1179–1189 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  37. V. V. Prasolov, Problems and Theorems of Linear Algebra (MTsNMO, Moscow, 2015) [in Russian].

    Google Scholar 

  38. A. Storjohann, “Near optimal algorithms for computing Smith normal forms of integer matrices,” in Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation (ACM, New York, 1996), pp. 267–274.

    Google Scholar 

  39. A. Storjohann and G. Labahn, “Asymptotically fast computation of Hermite normal forms of integer matrices,” in Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation (1996), pp. 259–266.

    Google Scholar 

  40. G. Ziegler, Lectures on Polytopes (Springer, New York, 1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Veselov, D. V. Gribanov or D. S. Malyshev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselov, S.I., Gribanov, D.V. & Malyshev, D.S. FPT-Algorithm for Computing the Width of a Simplex Given by a Convex Hull. MoscowUniv.Comput.Math.Cybern. 43, 1–11 (2019). https://doi.org/10.3103/S0278641919010084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0278641919010084

Keywords

Navigation