Skip to main content
Log in

Stagnation in the p-version of the finite element method

  • Published:
Moscow University Computational Mathematics and Cybernetics Aims and scope Submit manuscript

Abstract

A special feature of the p-version of the finite element method for solving a differential boundary value problem stated in the form of minimizing a quadratic functional on a certain set is studied. This special feature results in approximate solutions remaining unchanged on finite numbers of increasing finite-dimensional subsets of increasing dimension, in which solutions are sought. Necessary and sufficient conditions for the existence of this feature are found, and the stagnation effect is interpreted for a specially constructed example. For the adaptive p-version of the finite element approach, a modified strategy is proposed that takes this feature into account and thus improves the reliability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuska and W. C. Rheinboldt, “A posteriory error estimates for the finite element method,” Int. J. Numer. Methods Eng. 12, 1597–1615 (1978).

    MATH  Google Scholar 

  2. I. Babuska and W. C. Rheinboldt, “Error estimates for adaptive finite element computations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 15, 736–754 (1978).

    MATH  MathSciNet  Google Scholar 

  3. R. E. Bank and A. Weiser, “Some a posteriory error estimates for elliptic partial differential equations,” Math. Comput. 44, 283–301 (1985).

    MATH  MathSciNet  Google Scholar 

  4. M. Ainsworth and J. T. Oden, “A procedure for a posteriory error estimation for h-p-finite element methods,” Comput. Methods Appl. Mech. Eng. 101, 73–96 (1992).

    MATH  MathSciNet  Google Scholar 

  5. M. Ainsworth and J. T. Oden, “A unified approach to a posteriory error estimation using element residual methods,” Numer. Math. 65, 23–50 (1993).

    MATH  MathSciNet  Google Scholar 

  6. F. A. Bornemann, B. Erdmann, and R. Kornhuber, “A posteriory error estimates for elliptic problem in two and three space dimensions,” SIAM J. Numer. Anal. 33, 1188–1204 (1996).

    MATH  MathSciNet  Google Scholar 

  7. R. Verfurth, “A posteriori error estimation and adaptive mesh-refinement techniques,” J. Comput. Appl. Math. 50, 67–83 (1996).

    MathSciNet  Google Scholar 

  8. M. Ainsworth and J. T. Oden, “A posteriory error estimation in finite element analysis,” Comput. Meth. Appl. Mech. Eng. 142, 1–88 (1997).

    MATH  MathSciNet  Google Scholar 

  9. O. C. Zienkiewicz, D. W. Kelly, J. P. de Gago, and I. Babuska, “Hierarchical finite element approaches, adaptive refinement and error estimates,” in The Mathematics of Finite Elements and Applications (Academic Press, London, 1982), pp. 313–346.

    Google Scholar 

  10. O. C. Zienkiewicz and A. Craig, “Adaptive refinement, error estimates, multigrid solution, and hierarchical finite element method concepts,” in Accuracy Estimates and Adaptiuve Refinements in Finite Element Computations (Wiley, Chichester, 1986), pp. 25–59.

    Google Scholar 

  11. R. E. Bank and R. K. Smith, “A posteriory error estimates based on hierarchical bases,” SIAM J. Numer. Anal. 30, 921–935 (1993).

    MATH  MathSciNet  Google Scholar 

  12. E. S. Nikolaev, “Adaptive mesh refinement in boundary value problems for linear ODE systems,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 3, 11–19 (2000).

    Google Scholar 

  13. Nikolaev E.S. “Method of solving a boundary value problem for a second order ODE on a sequence of adaptively refined and coarsened meshes,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 4, 5–16 (2004).

    Google Scholar 

  14. E. S. Nikolaev and O. V. Shishkina, “A method of solving the Dirichlet problem for the second-order elliptic equation in a polygonal domain on an adaptively refined mesh sequence,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 4, 3–15 (2005).

    Google Scholar 

  15. N. D. Zolotareva, and E. S. Nikolaev, “Method for constructing meshes adapting to the solution of boundary value problems for ordinary differential equations of the second and fourth orders,” Differ. Equations 45, 1189–1202 (2009).

    MATH  MathSciNet  Google Scholar 

  16. N. D. Zolotareva, and E. S. Nikolaev, “Adaptive P-version of the finite element method for solving boundary value problems for ordinary second-order differential equations,” Differ. Equations 49, 835–848 (2013).

    MATH  MathSciNet  Google Scholar 

  17. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; CRC Press, New York, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Zolotareva.

Additional information

Original Russian Text © N.D. Zolotareva, E.S. Nikolaev, 2014, published in Vestnik Moskovskogo Universiteta. Vychislitel’naya Matematika i Kibernetika, 2014, No. 3, pp. 5–13.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotareva, N.D., Nikolaev, E.S. Stagnation in the p-version of the finite element method. MoscowUniv.Comput.Math.Cybern. 38, 91–99 (2014). https://doi.org/10.3103/S0278641914030108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0278641914030108

Keywords

Navigation