Skip to main content
Log in

Application of ATR spectroscopy for astrobiological investigations aboard planetary landers

  • Biology of Soils
  • Published:
Moscow University Soil Science Bulletin Aims and scope

Abstract

We propose the use of infrared attenuated total reflectance (ATR) spectroscopy aboard landers for contact astrobiological soil research on terrestrial planets. The method is based on the absorption bands inherent to biological macromolecules (proteins, DNA/RNA, and carbohydrates). It is also applicable to mineralogical studies of soil, dust, and atmospheric precipitation; the use of balloons (e.g., on Venus) adds aerosols to this list. The optimal spectral range seems to be 2.5–25 μm; the optimal spectral resolution, about 10 cm–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duda, V.I., Korolev, Yu.N., El’-Registan, G.I., et al., Distribution and spatial ordering of biopolymers molecules in hypnospores, Mikrobiologiya, 1978, vol. 47, no. 4.

    Google Scholar 

  2. Lein, A.Yu., Glushchenko, N.N., Osipov, G.A., et al., Biomarkers of sulphide ores from ancient and modern “black smokers”, Dokl. Akad. Nauk, 1998, vol. 359, no. 4.

    Google Scholar 

  3. Orlov, D.S. and Osipova, N.N., Infrakrasnye spektry pochv i pochvennykh komponentov (Infrared Spectra of Soils and Soil Components), Moscow, 1988.

    Google Scholar 

  4. Plyusnina, I.I., Infrakrasnye spektry mineralov (Minerals Infrared Spectra), Moscow, 1976.

    Google Scholar 

  5. Harrick, N.J., Internal Reflection Spectroscopy, New York: Wiley, 1967.

    Google Scholar 

  6. Cheptsov, V.S., Vorob’eva, E.A., Gorlenko, M.V., et al., Influence of gamma radiation, low pressure and low temperature on viability of microbial community of the gray soil as analytical model of Martian regolith, Sovrem. Probl. Nauki Obraz., 2015, no. 3.

    Google Scholar 

  7. Abyzov, S.S., Microorganisms in the Antarctic ice, in Antarctic Microbiology, Friedmann, E.I., Ed., New York, 1993.

    Google Scholar 

  8. Board, S.S., A Science Strategy for the Exploration of Europa, Washington, 1999.

    Google Scholar 

  9. Castro, F.D., Sedman, J., Ismail, A.A., et al., Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration, Environ. Sci. Technol., 2010, vol. 44, no. 11.

    Google Scholar 

  10. Dartnell, L.R., Hunter, S.J., Lovell, K.V., et al., Lowtemperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic dry valley bacteria, Astrobiology, 2010, vol. 10, no. 7.

    Google Scholar 

  11. Farmer, V.C., The Infrared Spectra of Minerals, London, 1974.

    Book  Google Scholar 

  12. FDM FTIR and Raman Spectral Libraries. http://www.fdmspectra.com/. Cited 08.12.2016.

  13. Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., et al., Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology, Astrobiology, 2007, vol. 7, no. 2.

    Google Scholar 

  14. Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J.-M., Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fouriertransform infrared spectroscopy on hydrated films, Eur. J. Biochem., 1990, vol. 193, no. 2.

    Google Scholar 

  15. Kargel, J.S., Kaye, J.Z., Head, J.W., et al., Europa’s crust and ocean: origin, composition, and the prospects for life, Icarus, 2000, vol. 148, no. 1.

    Google Scholar 

  16. Infrared Spectroscopy of Biomolecules, Mantsch, H.H. and Chapman, D., Eds., New York, 1996.

  17. Martín-Gil, J., Palacios-Leblé, G., Ramos, P.M., and Martín-Gil, F.J., Analysis of a celtiberian protective paste and its possible use by Arevaci warriors, J. Interdiscipl. Celtic Stud., 2007, vol. 5, pp. 63–76.

    Google Scholar 

  18. Pedersen, K., Microbial life in deep granitic rock, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3-4.

    Google Scholar 

  19. Shekhovtsova, N.V., Osipov, G.A., Verkhovtseva, N.V., and Pevzner, L.A., Analysis of lipid biomarkers in rocks of the Archean crystalline basement, Proc. SPIE Int. Soc. Opt. Eng., 2003, vol. 4939, pp. 160–168.

    Google Scholar 

  20. Soina, V.S., Mulyukin, A.L., Demkina, E.V., et al., The structure of resting bacterial populations in soil and subsoil permafrost, Astrobiology, 2004, vol. 4, no. 3.

    Google Scholar 

  21. Soina, V.S. and Vorobyova, E.A., Role of cell differentiation in high resistance of prokaryotes to cryoconservation in permafrost, Adv. Space Res., 1996, vol. 18, no. 12.

    Google Scholar 

  22. S.T. Japan USA, LLC. http://www.stjapan-usa.com. Cited December 8, 2016.

  23. Squyres, S., Vision and Voyages for Planetary Science in the Decade 2013–2022, Washington, 2011.

    Google Scholar 

  24. Vorobyova, E., Cheptcov, V., Pavlov, A., et al., The viability of native microbial communities in Martian environment (model), in Proc. 40th COSPAR Sci. Assem., Moscow, 2014.

    Google Scholar 

  25. Vorobyova, E., Soina, V., Gorlenko, M., et al., The deep cold biosphere: facts and hypotheses, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3-4.

    Google Scholar 

  26. Wilson, E.B., Jr., Decius, J.C., and Cross, P.C., Molecular Vibrations: the Theory of Infrared and Raman Vibrational Spectra, New York, 1955.

    Google Scholar 

  27. Yu, C. and Irudayaraj, J., Spectroscopic characterization of microorganisms by FTIR microspectroscopy, J. Biopolym., 2005, vol. 77, no. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Grigoriev.

Additional information

Original Russian Text © A.V. Grigoriev, E.A. Vorobyova, V.S. Cheptsov, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 17: Pochvovedenie, 2017, No. 3, pp. 51–56.

The article was translated by the authors.

This work has been done with the support of Program 1.7P of the Russian Academy of Sciences.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, A.V., Vorobyova, E.A. & Cheptsov, V.S. Application of ATR spectroscopy for astrobiological investigations aboard planetary landers. Moscow Univ. Soil Sci. Bull. 72, 136–141 (2017). https://doi.org/10.3103/S0147687417030048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147687417030048

Keywords

Navigation