Skip to main content
Log in

Fully Integrated Spatial Information to Improve FCM Algorithm for Brain MRI Image Segmentation

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

FCM algorithm is one of the well-known techniques for image segmentation; it is based on an imprecise decision by using the membership function. However, FCM algorithm fails to proceed well enough in the presence of imaging artifacts due to its performance without any consideration of spatial information. In this paper, we propose two crucial modifications to the conventional FCM algorithm to tackle its sensitivity against noise. Firstly, the proposed algorithm provides full consideration of the spatial constraint, wherein the influence of neighboring pixels is defined according to two proposed terms, a fuzzy similarity measure as well as the level of noise. Secondly, we adopt a strategy to select the optimal pixel between the central pixel and its neighboring pixels that can better influence the segmentation performance in terms of compactness and separation information. The proposed algorithm is compared qualitatively and quantitatively with five existing clustering methods in terms of cluster validity functions, segmentation accuracy, tissue segmentation accuracy, and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gose, E., Johnsbaugh, R., and Jost, S., Pattern Recognition and Image Analysis, Upper Saddle River, N.J.: Prentice Hall, 1996.

    Google Scholar 

  2. Ahmed, M.N., Yamany, S.M., Mohamed, N., and Farag, A.A., and Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imaging, 2002, vol. 21, no. 3, pp. 193–199. https://doi.org/10.1109/42.996338

    Article  Google Scholar 

  3. Szilágyi, L., Benyo, Z., Szilágyi, S.M., and Adam, H.S., MR brain image segmentation using an enhanced fuzzy C-means algorithm, Proc. 25th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), Cancun, 2003, IEEE, 2003, vol. 1, pp. 724–726.  https://doi.org/10.1109/IEMBS.2003.1279866

  4. Chuang, K.-S., Tzeng, H.-L., Chen, S.W., Wu, J., and Chen, T.-J., Fuzzy c-means clustering with spatial information for image segmentation, Comput. Med. Imaging Graphics, 2006, vol. 30, no. 1, pp. 9–15.  https://doi.org/10.1016/j.compmedimag.2005.10.001

    Article  Google Scholar 

  5. Cai, W., Chen, S., and Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognit., 2007, vol. 40, no. 3, pp. 825–838.  https://doi.org/10.1016/j.patcog.2006.07.011

    Article  MATH  Google Scholar 

  6. Wang, J., Kong, J., Lu, Y., Qi, M., and Zhang, B., A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints, Comput. Med. Imaging Graphics, 2008, vol. 32, no. 8, pp. 685–698.  https://doi.org/10.1016/j.compmedimag.2008.08.004

    Article  Google Scholar 

  7. Krinidis, S. and Chatzis, V., A robust fuzzy local information c-means clustering algorithm, IEEE Trans. Image Process., 2010, vol. 19, no. 5, pp. 1328–1337. https://doi.org/10.1109/TIP.2010.2040763

    Article  MathSciNet  MATH  Google Scholar 

  8. Adhikari, S.K., Sing, J.K., Basu, D.K., and Nasipuri, M., Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images, Appl. Soft Comput., 2015, vol. 34, pp. 758–769.  https://doi.org/10.1016/j.asoc.2015.05.038

    Article  Google Scholar 

  9. Verma, H., Agrawal, R.K., and Sharan, A., An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation, Appl. Soft Comput., 2015, vol. 46, pp. 543–557.  https://doi.org/10.1016/j.asoc.2015.12.022

    Article  Google Scholar 

  10. Mahmood, Q., Chodorowski, A., and Persson, M., Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps, IRBM, 2015, vol. 36, no. 3, pp. 185–196.  https://doi.org/10.1016/j.irbm.2015.01.007

    Article  Google Scholar 

  11. Meena Prakash, R. and Shantha Selva Kumari, R., Fuzzy C means integrated with spatial information and contrast enhancement for segmentation of MR brain images, Int. J. Imaging Syst. Technol., 2016, vol. 26, no. 12, pp. 116–123. https://doi.org/10.1002/ima.22166

    Article  Google Scholar 

  12. Zhao, F., Liu, H., Fan, J., Chen, C.W., Lan, R., and Li, N., Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation, Neurocomputing, 2018, vol. 312, pp. 296–309. https://doi.org/10.1016/j.neucom.2018.05.116

    Article  Google Scholar 

  13. Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., and Nandi, A.K., Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering, IEEE Trans. Fuzzy Syst., 2018, vol. 26, no. 5, pp. 3027–3041.  https://doi.org/10.1109/TFUZZ.2018.2796074

    Article  Google Scholar 

  14. Zhao, F., Fan, J., Liu, H., Lan, R., and Chen, C.W., Noise robust multiobjective evolutionary clustering image segmentation motivated by the intuitionistic fuzzy information, IEEE Trans. Fuzzy Syst., 2018, vol. 27, no. 2, pp. 387–401.  https://doi.org/10.1109/TFUZZ.2018.2852289

    Article  Google Scholar 

  15. Wu, C. and Yang, X., Robust credibilistic fuzzy local information clustering with spatial information constraints, Digital Signal Process., 2020, vol. 97, p. 102615. https://doi.org/10.1016/j.dsp.2019.102615

    Article  Google Scholar 

  16. Roy, S. and Maji, P., Medical image segmentation by partitioning spatially constrained fuzzy approximation spaces, IEEE Trans. Fuzzy Syst., 2020, vol. 28, no. 5, pp. 965–977.  https://doi.org/10.1109/TFUZZ.2020.2965896

    Article  Google Scholar 

  17. Wang, Q., Wang, X., Fang, C., and Yang, W., Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation, Appl. Soft Comput., 2020, vol. 92, p. 106318.  https://doi.org/10.1016/j.asoc.2020.106318

    Article  Google Scholar 

  18. Bezdek, J.C., Cluster validity with fuzzy sets, J. Cybern., 1973, vol. 3, no. 3, pp. 58–73. https://doi.org/10.1080/01969727308546047

    Article  MathSciNet  MATH  Google Scholar 

  19. Bezdek, J.C, Mathematical models for systematic and taxonomy, Proc. 8th Int. Conf. on Numerical Taxonomy, San Francisco, 1975, pp. 143–166.

  20. Fukyama, Y. and Sugeno, T., A new method of choosing the number of clusters for the fuzzy c-means method, Proc. 5th Fuzzy Systems Symp., 1989, pp. 247–250.

  21. Xie, X. and Beni, G., A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 1991, vol. 13, no. 8, pp. 841–847.  https://doi.org/10.1109/34.85677

    Article  Google Scholar 

  22. Bensaid, A.M., Hall, L.O., Bezdek, J.C., Clarke, L.P., Silbiger, M.L., Arrington, J.A., and Murtagh, R.F., Validity-guided (re)clustering with applications to image segmentation, IEEE Trans. Fuzzy Syst., 1996, vol. 4, no. 2, pp. 112–123.  https://doi.org/10.1109/91.493905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fouzia Chighoub or Rachida Saouli.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouzia Chighoub, Rachida Saouli Fully Integrated Spatial Information to Improve FCM Algorithm for Brain MRI Image Segmentation. Aut. Control Comp. Sci. 56, 67–82 (2022). https://doi.org/10.3103/S0146411622010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622010047

Keywords:

Navigation