Skip to main content
Log in

PARP1 Binding to DNA Breaks and Hairpins Alters Nucleosome Structure

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Poly(ADP-ribose)polymerase 1 (PARP1) is involved in the processes of DNA repair, replication, transcription, cell cycle regulation, and apoptosis. Participation of PARP1 in DNA repair is determined by the ability of the enzyme to interact with various damages and noncanonical structures of DNA with consequent polyADP-ribosylation of neighboring proteins. Earlier, for mononucleosomes containing a DNA end recapitulating double-strand DNA break near the nucleosome, it was found that PARP1 induces nucleosome structural changes in the absence of NAD+. In the present work, it is reported that PARP1 induces similar structural changes in nucleosomes containing either DNA ends extending from the core by 20 bp or containing hairpins at the DNA ends. In all the cases, PARP1 caused changes in DNA wrapping on the surface of the histone octamer that are accompanied by an increase in the distance between adjacent DNA gyres. These PARP1-mediated changes in the nucleosome structure presumably contribute to chromatin decondensation and facilitate access of repair enzymes to damaged DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ludwig, A., Behnke, B., Holtlund, J., and Hilz, H., Immunoquantitation and size determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes, J. Biol. Chem., 1988, vol. 263, no. 15, pp. 6993–6999.

    CAS  PubMed  Google Scholar 

  2. Ame, J.C., Spenlehauer, C., and de Murcia, G., The PARP superfamily, BioEssays, 2004, vol. 26, no. 8, pp. 882–893.

    Article  CAS  Google Scholar 

  3. Langelier, M.F., Planck, J.L., Roy, S., and Pascal, J.M., Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1, Science, 2012, vol. 336, no. 6082, pp. 728–732.

    Article  CAS  Google Scholar 

  4. Langelier, M.F., Eisemann, T., Riccio, A.A., and Pascal, J.M., PARP family enzymes: Regulation and catalysis of the poly(ADP-ribose) posttranslational modification, Curr. Opin. Struct. Biol., 2018, vol. 53, pp. 187–198.

    Article  CAS  Google Scholar 

  5. Pion, E., Ullmann, G.M., Amé, J.C., Gérard, D., de Murcia, G., and Bombarda, E., DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation, Biochemistry, 2005, vol. 44, no. 44, pp. 14670–14681.

    Article  CAS  Google Scholar 

  6. Pascal, J.M., The comings and goings of PARP-1 in response to DNA damage, DNA Repair (Amsterdam), 2018, vol. 71, pp. 177–182.

    Article  CAS  Google Scholar 

  7. Haince, J.F., McDonald, D., Rodrigue, A., Dery, U., Masson, J.Y., Hendzel, M.J., and Poirierg, G.G., PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites, J. Biol. Chem., 2008, vol. 283, no. 2, pp. 1197–1208.

    Article  CAS  Google Scholar 

  8. Liu, C., Vyas, A., Kassab, M.A., Singh, A.K., and Yu, X., The role of poly ADP-ribosylation in the first wave of DNA damage response, Nucleic Acid Res., 2017, vol. 45, no. 14, pp. 8129–8141.

    Article  CAS  Google Scholar 

  9. Sultanov, D.C., Gerasimova, N.S., Kudryashova, K.S., Maluchenko, N.V., Kotova, E.Y., Langelier, M.F., Pascal, J.M., Kirpichnikov, M.P., Feofanov, A.V., and Studitsky, V.M., Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy, AIMS Genet., 2017, vol. 4, no. 1, pp. 21–31.

    Article  Google Scholar 

  10. Liu, Z. and Kraus, K.W., Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci, Mol. Cell, 2017, vol. 65, no. 4, pp. 589–603.

    Article  CAS  Google Scholar 

  11. Valieva, M.E., Armeev, G.A., Kudryashova, K.S., Gerasimova, N.S., Shaytan, A.K., Kulaeva, O.I., McCullough, L.L., Formosa, T., Georgiev, P.G., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Large-scale ATP-independent nucleosome unfolding by a histone chaperone, Nat. Struct. Mol. Biol., 2016, vol. 23, no. 12, pp. 1111–1116.

    Article  CAS  Google Scholar 

  12. Valieva, M.E., Gerasimova, N.S., Kudryashova, K.S., Kozlova, A.L., Kirpichnikov, M.P., Hu, Q., Botuyan, M.V., Mer, G., Feofanov, A.V., and Studitsky, V.M., Stabilization of nucleosomes by histone tails and by FACT revealed by spFRET microscopy, Cancers, 2017, vol. 9, no. 1, p. 3.

    Article  Google Scholar 

  13. Gaykalova, D.A., Kulaeva, O.I., Bondarenko, V.A., and Studitsky, V.M., Preparation and analysis of uniquely positioned mononucleosomes, Methods Mol. Biol., 2009, vol. 523, pp. 109–123.

    Article  CAS  Google Scholar 

  14. Langelier, M.F., Steffen, J., Riccio, A.A., McCauley, M., and Pascal, J.M., Purification of DNA damage-dependent PARPs from E. coli for structural and biochemical analysis, Methods Mol. Biol., vol. 1608, pp. 431–444.

  15. Kudryashova, K.S., Nikitin, D.V., Chertkov, O.V., Gerasimova, N.S., Valeva, M.E., Studitsky, V.M., and Feofanov, A.V., Development of fluorescently labeled mononucleosomes for the investigation of transcription mechanisms by single complex microscopy, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, no. 4, pp. 189–193.

    Article  Google Scholar 

  16. Kudryashova, K.S., Chertkov, O.V., Nikitin, D.V., Pestov, N.A., Kulaeva, O.I., Efremenko, A.V., Solonin, A.S., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET, Methods Mol. Biol., vol. 1288, pp. 395–412.

  17. Polach, K.J. and Widom, J., Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation, J. Mol. Biol., 1995, vol. 254, no. 2, pp. 130–149.

    Article  CAS  Google Scholar 

  18. Clark, N.J., Kramer, M., Muthurajan, U.M., and Luger, K., Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes, J. Biol. Chem., 2012, vol. 287, no. 39, pp. 32430–32439.

    Article  CAS  Google Scholar 

  19. Potaman, V.N., Shlyakhtenko, L.S., Oussatcheva, E.A., Lyubchenko, Y.L., and Soldatenkov, V.A., Specific binding of poly(ADP-ribose) polymerase-1 to cruciform hairpins, J. Mol. Biol., 2005, vol. 348, no. 3, pp. 609–661.

    Article  CAS  Google Scholar 

  20. Muthurajan, U.M., Hepler, M.R., Hieb, A.R., Clark, N.J., Kramer, M., Yao, T., and Luger, K., Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 35, pp. 12752–12757.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed with the support from the Russian Foundation for Basic Research, project no. 17-54-33045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Malyuchenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The study was performed without the use of animals and without involving people as subjects.

Additional information

Translated by P. Kuchina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyuchenko, N.V., Kotova, E.Y., Kirpichnikov, M.P. et al. PARP1 Binding to DNA Breaks and Hairpins Alters Nucleosome Structure. Moscow Univ. Biol.Sci. Bull. 74, 158–162 (2019). https://doi.org/10.3103/S0096392519030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392519030076

Keywords:

Navigation