Skip to main content
Log in

A Study on Allometry of Wing Shape and Venation in Insects. Part 1. Hymenoptera

  • Entomology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Allometry of wing shape is very common among insects, since wing-air interaction and aerodynamics of flight are largely depend on body size. In the present work we have studied allometry of wing shape and venation on wide range of representatives of Hymenoptera. It has been shown that by increase in body size, the aspect ratio of forewings grows, and the center of the area shifts towards the base; similar parameters of hindwings do not correlate with size of the insects. Geometric morphometric methods permitted to reveal allometric tendencies in arrangement of wing vein elements common for the hymenopterans studied. At increase of body size, the cells of central region of forewings stretch in longitudinal direction, the cells of distal and proximal regions reduce in length. In the case of hindwings, most families with increase in body size show elongation of the cells in proximal zone and shortening of the cells in distal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt-Nielsen, K., Scaling: Why Is Animal Size So Important?, Cambridge: Cambridge Univ. Press, 1984.

    Book  Google Scholar 

  2. Cheverud, J.M., Relationships among ontogenetic, static and evolutionary allometry, Am. J. Phys. Anthropol., 1982, vol. 59, no. 2, pp. 139–149.

    Article  CAS  PubMed  Google Scholar 

  3. Shingleton, A.W., Frankino, W.A., Thomas, F.T., Nijhout, H.F., and Emlen, D.J., Size and shape: The developmental regulation of static allometry in insects, BioEssays, 2007, vol. 29, no. 6, pp. 536–548.

    Article  Google Scholar 

  4. Dujardin, J.P., Le Pont, F., and Baylac, M., Geographical versus interspecific differentiation of sand flies: A landmark data analysis, Bull. Entomol. Res., 2003, vol. 93, no. 1, pp. 87–90.

    Article  PubMed  Google Scholar 

  5. Chin, D.D. and Lentink, D., Flapping wing aerodynamics: From insects to vertebrates, J. Exp. Biol., 2016, vol. 219, no. 7, pp. 920–932.

    Article  PubMed  Google Scholar 

  6. Harbig, R.R., Sheridan, J., and Thompson, M.C., Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms, J. Fluid Mech., 2013, vol. 717, pp. 166–192.

    Article  Google Scholar 

  7. Danforth, B.N., The evolution of hymenopteran wings: The importance of size, J. Zool. (London), 1989, vol. 218, no. 2, pp. 247–276.

    Article  Google Scholar 

  8. Francuski, L., Vujic, A., Kovacevic, A., Ludoški, J., and Milankov, V., Identification of the species of the Cheilosia variabilis group (Diptera, Syrphidae) from the Balkan Peninsula using wing geometric morphometrics, with the revision of status of C. melanopa redi Vujic, 1996, Contr. Zool., 2009, vol. 78, no. 3, pp. 129–140.

    Article  Google Scholar 

  9. Mielczarek, L.E., Oleksa, A., Meyza, K., and Tofilski, A., Seasonal polyphenism in Eristalis pertinax (Diptera: Syrphidae), Eur. J. Entomol., 2016, vol. 113, pp. 489–496.

    Article  Google Scholar 

  10. Pretorius, E., Using geometric morphometrics to investigate wing dimorphism in males and females of hymenoptera—a case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae), Aus. J. Entomol., 2005, vol. 44, no. 2, pp. 113–121.

    Article  Google Scholar 

  11. Gidaszewski, N.A., Baylac, M., and Klingenberg, C.P., Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup, BMC Evol. Biol., 2009, vol. 9, p. 110.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Warton, D.I., Duursma, R.A., Falster, D.S., and Taskinen, S., Smatr 3—an R package for estimation and inference about allometric lines, Methods Ecol. Evol., 2012, vol. 3, no. 2, pp. 257–259.

    Article  Google Scholar 

  13. Pavlinov, I.Ya. and Mikeshina, N.G., Principles and methods of geometric morphometry, Zh. Obshch. Biol., 2002, vol. 63, no. 6, pp. 473–493.

    PubMed  Google Scholar 

  14. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier Academic Press, 2004.

    Google Scholar 

  15. tpsDig2. Morphometrics at SUNY Stony Brook, 2013. http://life.bio.sunysb.edu/morph. Accessed August 3, 2018.

  16. tpsDig2. Morphometrics at SUNY Stony Brook, 2015. http://life.bio.sunysb.edu/morph. Accessed August 3, 2018.

  17. Arnqvist, G. and Martensson, T., Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape, Acta Zool. Acad. Sci. Hung., 1998, vol. 44, nos. 1–2, pp. 73–96.

    Google Scholar 

  18. Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, no. 2, pp. 353–357.

    Article  Google Scholar 

  19. Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, 1997, 4th ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Belyaev.

Additional information

Original Russian Text © O.A. Belyaev, S.E. Farisenkov, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2018, Vol. 73, No. 4, pp. 277–284.

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, O.A., Farisenkov, S.E. A Study on Allometry of Wing Shape and Venation in Insects. Part 1. Hymenoptera. Moscow Univ. Biol.Sci. Bull. 73, 229–235 (2018). https://doi.org/10.3103/S0096392518040028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392518040028

Keywords

Navigation