Skip to main content
Log in

Comparative analysis of SERPINA1 gene expression in tumor cell lines

  • Molecular Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The expression of SERPINA1 gene in prostate (DU145, PC-3 and LNCaP) and liver (HepG2) tumor cell lines was studied. Alpha1-antitrypsin (AAT) level in the whole cell extracts, secretomes, subcellular fractions and SERPINA1 mRNA level in the corresponding cells were detected. Discordance between expression at these two levels in PC-3 and LNCaP lines was revealed. A new 37 kDa AAT N-terminus truncated isoform was detected in the nuclear extracts of some prostate tumor cell lines. The mechanism of 37 kDa AAT isoform intracellular retention was proposed. Two polyadenylation sites in the 3'-untranslated region of SERPINA1 transcripts were identified. A SERPINA1 gene 3'-untranslated region influence on AAT translation has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowe, R.G. and Weiss, S.J., Navigating ECM barriers at the invasive front: the cancer cell–stroma interface, Annu. Rev. Cell Dev. Biol., 2009, vol. 25, pp. 2009–25.

    Article  Google Scholar 

  2. Friedl, P. and Wolf, K., Tube travel: the role of proteases in individual and collective a cancer cell invasion, Cancer Res., 2008, vol. 68, no. 18, pp. 7247–7249.

    Article  CAS  PubMed  Google Scholar 

  3. Wolf, K., Wu, Y.I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M.S., and Friedl, P., Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion, Nat. Cell Biol., 2007, vol. 9, no. 8, pp. 893–904.

    Article  CAS  PubMed  Google Scholar 

  4. Perlmutter, D.H., Cole, F.S., Kilbridge, P., Rossing, Th., and Colten, H.R., Expression of the alpha 1-proteinase inhibitor gene in human monocytes and macrophages, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, no. 3, pp. 795–799.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wozniak, A., Mila-Kierzenkowska, C., Schachtschabel, D.O., Wozniak, B., Rozwodowska, M., Drewa, T., Drewa, S., Sir, J., Sir, I., Maciak, R., and KrzyzynskaMalinowska, E., Activity of cathepsin D and alpha(1)antitrypsin in the blood serum of patients with mammary carcinoma, Exp. Oncol., 2005, vol. 27, no. 3, pp. 233–237.

    CAS  PubMed  Google Scholar 

  6. Dokrunova, A.A., Ulasova, N.Yu., Kramina, T.E., Al’bitskii, I.A., Khasigov, P.Z., and Sokolova, O.S., Polymorphism of alpha-1 antitrypsin in cancer and benign prostatic hyperplasia, Mol. Med., 2010, no. 6, pp. 43–49.

    Google Scholar 

  7. Kataoka, H., Seguchi, K., Inoue, T., and Koono, M., Properties of alpha 1-antitrypsin secreted by human adenocarcinoma cell lines, FEBS Lett., 1993, vol. 328, no. 3, pp. 291–295.

    Article  CAS  PubMed  Google Scholar 

  8. Lejeune, P.J., Mallet, B., Farnarier, C., and Kaplanski, S., Changes in serum level and affinity for concanavalin a of human alpha 1-proteinase inhibitor in severe burn patients: relationship to natural killer cell activity, Biochim. Biophys. Acta, 1989, vol. 990, no. 2, pp. 122–127.

    Article  CAS  PubMed  Google Scholar 

  9. Fukushima, M., Fukuda, Y., Kawamoto, M., and Yamanaka, N., Elastosis in lung carcinoma: immunohistochemical, ultrastructural and clinical studies, Pathol. Int., 2000, vol. 50, no. 8, pp. 626–635.

    Article  CAS  PubMed  Google Scholar 

  10. Dokrunova, A.A. and Sokolova, O.S., Content of a1antitrypsin in serum in prostate diseases, Urologiya, 2012, no. 5, pp. 77–80.

    Google Scholar 

  11. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, Th., Zahler, A.M., and Haussler, D., The human genome browser at UCSC, Genome Res., 2002, vol. 12, no. 6, pp. 996–1006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pfaffle, M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 2001, vol. 29, no. 9, p. e45.

    Article  Google Scholar 

  13. Rosner, M., Schipany, K., and Hengstschlager, M., Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle, Nat. Protoc., 2013, vol. 8, no. 3, pp. 602–626.

    Article  PubMed  Google Scholar 

  14. Feng, L. and Arvan, P., The trafficking of alpha 1-antitrypsin, a post-golgi secretory pathway marker, in INS-1 pancreatic beta cells, J. Biol. Chem., 2003, vol. 278, no. 34, pp. 31486–31494.

    Google Scholar 

  15. Owen, M.C., Brennan, S.O., Lewis, J.H., and Carrell, R.W., Mutation of antitrypsin to antithrombin. alpha 1antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder, N. Engl. J. Med., 1983, vol. 309, no. 12, pp. 694–698.

    Article  CAS  PubMed  Google Scholar 

  16. Samandari, T. and Brown, J.L., A study of the effects of altering the sites for N-glycosylation in alpha-1-proteinase inhibitor variants M and S, Protein Sci., 1993, vol. 2, no. 9, pp. 1400–1410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mayr, C. and Bartel, D.P., Widespread shortening of 3' UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells, Cell, 2009, vol. 138, no. 4, pp. 673–684.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Saito, S., Hosoda, N., and Hoshino, S., The Hbs1Dom34 protein complex functions in non-stop mRNA decay in mammalian cells, J. Biol. Chem., 2013, vol. 288, no. 24, pp. 17832–17843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hassan, T., Smith, S.G., Gaughan, K., and Oglesby, I.K., O’Neill, A., McElvaney, N.G., and Greene, C.M., Isolation and identification of cell-specific micrornas targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique, Nucleic Acids Res., 2013, vol. 41, no. 6, p. e71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A., and Burge, C.B., Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites, Science, 2008, vol. 320, no. 5883, pp. 1643–1647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ji, Z., Lee, J.Y., Pan, Z., Jiang, B., and Tian, B., Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 17, pp. 7028–7033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maslakova.

Additional information

The article was translated by the authors.

Original Russian Text © A.A. Maslakova, M.V. Telkov, I.V. Orlovsky, O.S. Sokolova, 2015, published in Vestnik Moskovskogo Universiteta. Biologiya, 2015, No. 3, pp. 26–31.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslakova, A.A., Telkov, M.V., Orlovsky, I.V. et al. Comparative analysis of SERPINA1 gene expression in tumor cell lines. Moscow Univ. Biol.Sci. Bull. 70, 127–131 (2015). https://doi.org/10.3103/S0096392515030086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392515030086

Keywords

Navigation