Skip to main content
Log in

Mendelism: Connecting the Dots Across Centuries

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The year 2022 paid a bicentennial tribute to the phenomenal work of the father of Genetics, Gregor Johann Mendel for deciphering the genetic logic behind the phenotypes. His principles were distilled as the law of segregation and law of independent assortment. His work was rediscovered 34 yr later by H. De Vries, C. Correns, and E. Tschermak and popularized by W. Bateson. While C. Darwin accounted for similarities among organisms through the differences in the form of evolution, G. Mendel accounted for similarities through heredity; the ideological gaps were bridged mathematically by R. Fisher. Later with the test of time, the interaction among researchers paved Mendelian principles into different branches of genetics viz., cytogenetics, molecular genetics, population genetics, quantitative genetics, etc. At present we have landed in the era of genomics and the emerging field of phenomics which have potential to bridge the huge gap between demand and supply in different agro-industrial and allied goods. The need to connect the budding researchers in the field of genetics with Mendelism and its significance, catalyzed our concentrated effort to link Mendelism across the centuries, highlighting its importance and extrapolating the concept of heredity and variation from garden peas to different life forms. In conclusion, as our knowledge on genetics deepens, more insights on underlying mechanisms and subsequent applications will be witnessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abbott, S. and Fairbanks, D.J., Experiments on plant hybrids by Gregor Mendel, Genetics, 2016, vol. 204, no. 2, pp. 407–422. https://doi.org/10.1534/genetics.116.195198

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allen, G.E., Hugo de Vries and the reception of the “mutation theory”, J. Hist. Biol., 1969, vol. 2, pp. 55–87. https://doi.org/10.1007/BF00137268

    Article  Google Scholar 

  3. Altenburg, E. and Muller, H.J., The genetic basis of truncate wing, —an inconstant and modifiable character in Drosophila, Genetics, 1920, vol. 5, no. 1, pp. 1–59. https://doi.org/10.1093/genetics/5.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersson, L. and Purugganan, M., Molecular genetic variation of animals and plants under domestication, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 30, p. e2122150119. https://doi.org/10.1073/pnas.2122150119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arber, W. and Linn, S., DNA modification and restriction, Annu. Rev. Biochem., 1969, vol. 38, no. 1, pp. 467–500. https://doi.org/10.1146/annurev.bi.38.070169.002343

    Article  CAS  PubMed  Google Scholar 

  6. Avery, O.T., MacLeod, C.M., and McCarty, M., Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III, J. Exp. Med., 1944, vol. 79, no. 2, pp. 137–158. https://doi.org/10.1084/jem.79.2.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ayala, F.J.F.J., Darwin and the scientific method, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 1, pp.10033–10039. https://doi.org/10.1073/pnas.0901404106

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bailey, L.H., Cross-breeding and Hybridizing: The Philosophy of the Crossing of Plants, Considered with Reference to their Improvement Under Cultivation, with a Brief Bibliography of the Subject, Ballarat: Rural Publ. Comp., 1892.

    Google Scholar 

  9. Bateson, W. and Mendel, G., Mendel’s Principles of Heredity, Massachusetts: Courier Corporation, 1902.

    Book  Google Scholar 

  10. Beadle, G.W. and Tatum, E.L., Genetic control of biochemical reactions in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 1941, vol. 27, no. 11, pp. 499–506. https://doi.org/10.1073/pnas.27.11.499

  11. Benzer, S., On the topology of the genetic fine structure, Proc. Natl. Acad. Sci. U. S. A., 1959, vol. 45, no. 11. pp. 1607–1620. https://doi.org/10.1073/pnas.45.11.1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berg, P., Baltimore, D., Boyer, H.W., Cohen, S.N., Davis, R.W., Hogness, D.S., Nathans, D., Roblin, R., Watson, J.D., Weissman, S., and Zinder, N.D., Potential biohazards of recombinant DNA molecules, Science, 1974, vol. 185, no. 4148, p. 303. https://doi.org/10.1126/science.185.4148.303

    Article  CAS  PubMed  Google Scholar 

  13. Berger, F., Which field of research would Gregor Mendel choose in the 21st century?, Plant Cell, 2022, vol. 34, no. 7, pp. 2462–2465. https://doi.org/10.1093/plcell/koac072

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berget, S.M., Moore, C., and Sharp, P.A., Spliced segments at the 5' terminus of adenovirus 2 late mRNA, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 8, pp. 3171–3175. https://doi.org/10.1073/pnas.74.8.3171

  15. Berry, A. and Browne, J., Mendel and Darwin, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 30, p. e2122144119. https://doi.org/10.1073/pnas.2122144119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bessman, M.J., Kornberg, A., Lehman, I.R., and Simms, E.S., Enzymic synthesis of deoxyribonucleic acid, Biochim. Biophys. Acta, 1956, vol. 21, no. 1, pp. 197–198. https://doi.org/10.1016/0006-3002(56)90127-5

    Article  CAS  PubMed  Google Scholar 

  17. Bishop, J.M., Cellular oncogenes and retroviruses, Annu. Rev. Biochem., 1983, vol. 52, pp. 301–354. https://doi.org/10.1146/annurev.bi.52.070183.001505

    Article  CAS  PubMed  Google Scholar 

  18. Blume, Y.B., Gregor Mendel and his role in the development of genetic science: to the 200th Anniversary of his birth, Bull. Natl. Acad. Sci. Ukr., 2022, vol. 11, pp. 29–38. https://doi.org/10.15407/visn2022.11.029

    Article  Google Scholar 

  19. Boveri, T., Results on the Constitution of the Chromatic Substance of the Cell Nucleus, Jena: Gustav Fischer, 1904.

    Google Scholar 

  20. Brah, G., Animal Genetics: Concepts and Implications, Ludhiana: Kalyani, 2013.

  21. Brennicke, A., Marchfelder, A., and Binder, S., RNA editing, FEMS. Microbiol. Rev., 1999, vol. 23, no. 3, pp. 297–316. https://doi.org/10.1111/j.1574-6976.1999.tb00401.x

    Article  CAS  PubMed  Google Scholar 

  22. Bridges, C.B., Direct proof through non-disjunction that the sex-linked genes of Drosophila are borne by the X-Chromosome, Science, 1914, vol. 40, no. 1020, pp. 107–109. https://doi.org/10.1126/science.40.1020.107

  23. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., Green fluorescent protein as a marker for gene expression, Science, 1994, vol. 263, no. 5148, pp. 802–805. https://doi.org/10.1126/science.8303295

  24. Chargaff, E., Chemical specificity of nucleic acids and mechanism of their enzymatic degradation, Experientia, 1950, vol. 6, pp. 201–209. https://doi.org/10.1007/BF02173653

    Article  PubMed  Google Scholar 

  25. Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J., An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA, Cell, 1977, vol. 12, no. 1, pp. 1–8. https://doi.org/10.1016/0092-8674(77)90180-5

    Article  CAS  PubMed  Google Scholar 

  26. Collins, F.S., and Fink, L., The human genome project, Alcohol Health Res. World, 1995, vol. 19, no. 3, pp. 190–195.

    PubMed  PubMed Central  Google Scholar 

  27. Correns, C.F.J.E.G., Mendel’s regel uber das verhalten der nachkommenschaft der rassenbastarde, Ber. Dtsch. Bot. Ges., 1900, vol. 18, pp. 158–167.

    Article  Google Scholar 

  28. Correns, C.F.J.E.G., Mendel’s law concerning the behavior of progeny of varietal hybrids, Genetics, 1950, vol. 35, no. 52, pp. 33–41.

    CAS  PubMed  Google Scholar 

  29. Creighton, H.B. and McClintock, B., A correlation of cytological and genetical crossing-over in Zea mays, Proc. Natl. Acad. Sci. U. S. A., 1931, vol. 17, no. 8, pp. 492–497. https://doi.org/10.1073/pnas.17.8.492

  30. Crick, F.H., Barnett, L., Brenner, S., and Watts-Tobin, R.J., General nature of the genetic code for proteins, Nature, 1961, vol. 192, pp. 1227–1232. https://doi.org/10.1038/1921227a0

    Article  CAS  PubMed  Google Scholar 

  31. Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.

    Book  Google Scholar 

  32. Darwin, C., The Variation of Animals and Plants Under Domestication, London: John Murray, 1868.

    Google Scholar 

  33. De Monet, J.B.P.A., Zoological Philosophy, an Exposition with Regard to the Natural History of Animals, London: Macmillan Publishers Ltd., 1914.

    Google Scholar 

  34. De Vries, H., Intracellular Pangenesis, Jena: G Fischer, 1889.

    Book  Google Scholar 

  35. Delaunay, L., Comparative karyological study of species Muscari Mill. and Bellevalia Lapeyr., Bull. Tiflis Bot. Gard., 1922, vol. 2, pp. 1–32.

    Google Scholar 

  36. Dobell, C., Antony van Leeuwenhoek and his “Little Animals”: being some account of the father of protozoology and bacteriology and his multifarious discoveries in these disciplines, Nature, 1932, vol. 130, no. 3288, pp. 679–680. https://doi.org/10.1038/130679a0

    Article  Google Scholar 

  37. Dobzhansky, T., Genetic nature of species differences, Am. Nat., 1937, vol. 71, no. 735, pp. 404–420. https://doi.org/10.1086/280726

    Article  Google Scholar 

  38. Dobzhansky, T., Mendelism, Darwinism, and evolutionis, Proc. Am. Philos. Soc., 1965, vol. 109, pp. 205–215.

    Google Scholar 

  39. Dronamraju, K., Sewall Wright (1889–1988), Jpn. J. Ge-net., 1990, vol. 65, no. 1, pp. 25–31. https://doi.org/10.1266/jjg.65.25

    Article  CAS  Google Scholar 

  40. Dronamraju, K., A Century of Geneticists: Mutation to Medicine, Boca Raton: CRC Press, 2018.

    Book  Google Scholar 

  41. Dronamraju, K., Haldane’s last years: his life and work in India (1957–1964), Genetics, 2010, vol. 185, no. 1, pp. 5–10. https://doi.org/10.1534/genetics.110.116632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. East, E.M., Mendel and his contemporaries, Sci. Mon., 1923, vol. 16, pp. 225–237.

    Google Scholar 

  43. Ellis, T.H.N., Hofer, J.M.I., Timmerman-Vaughan, G.M., Coyne, C.J., and Hellens, R.P., Mendel. 150 years on, Trends Plant Sci., 2011, vol. 16, pp. 590–596. https://doi.org/10.1016/j.tplants.2011.06.006

  44. Fairbanks, D.J., Demystifying the mythical Mendel: a biographical review, Heredity, 2022, vol. 129, no. 1, pp. 4–11. https://doi.org/10.1038/s41437-022-00526-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fedor, M.J. and Williamson, J.R., The catalytic diversity of RNAs, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, no. 5, pp. 399–412. https://doi.org/10.1038/nrm1647

    Article  CAS  PubMed  Google Scholar 

  46. Fisher, R.A., XV. The correlation between relatives on the supposition of Mendelian inheritance, Trans. - R. Soc. Edinburgh., 1919, vol. 52, no. 2, pp. 399–433. https://doi.org/10.1017/S0080456800012163

  47. Fisher, R.A., The evolution of dominance in certain polymorphic species, Am. Nat., 1930a, vol. 64, no. 694, pp. 385–406. https://doi.org/10.1086/280325

    Article  Google Scholar 

  48. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Oxford Univ., 1930b.

    Book  Google Scholar 

  49. Fisher, R.A., Has Mendel’s work been rediscovered?, Ann. Sci., 1936, vol. 1, no. 2, pp. 115–137. https://doi.org/10.1080/00033793600200111

    Article  Google Scholar 

  50. Focke, W.O., The Plant Hybrids: A Contribution to the Biology of Plants (Stuttgart: Borntraeger Brothers, 1881. Fraenkel-Conrat, H., and Singer, B., Virus reconstitution and the proof of the existence of genomic RNA, Philos. Trans. R. Soc., B, 1999, vol. 354, no. 1383, pp. 583–586. https://doi.org/10.1098/rstb.1999.0409

  51. Franklin, A., Edwards, A.W.F., Fairbanks, D.J., and Hartl, D.L., Ending the Mendel-Fisher Controversy, Pittsburgh: Univ. Pittsburgh, 2008.

    Book  Google Scholar 

  52. Furth, J.J., Hurwitz, J., and Anders, M., The role of deoxyribonucleic acid in ribonucleic acid synthesis: I. The purification and properties of ribonucleic acid polymerase, J. Biol. Chem., 1962, vol. 237, pp. 2611–2619. https://doi.org/10.1016/S0021-9258(19)73796-X

    Article  CAS  PubMed  Google Scholar 

  53. Galton, F., Inquiries into Human Faculty and Its Development, London: Macmillan Publ., 1883.

    Book  Google Scholar 

  54. Gardner, E.J., Principles of Genetics, Hoboken: John Wiley & Sons, 1972.

    Google Scholar 

  55. Garrod, A., The incidence of alkaptonuria: a study in chemical individuality, Lancet, 1902, vol. 160, no. 4137, pp. 1616–1620.

    Article  Google Scholar 

  56. Gartler, S.M., The chromosome number in humans: a brief history, Nat. Rev. Genet., 2006, vol. 7, no. 8, pp. 655–660. https://doi.org/10.1038/nrg1917

    Article  CAS  PubMed  Google Scholar 

  57. Gayon, J., From Mendel to epigenetics: History of genetics, C. R. Biol., 2016, vol. 339, nos. 7–8. pp. 225–230. https://doi.org/10.1016/j.crvi.2016.05.009

    Article  PubMed  Google Scholar 

  58. Gest, H., Homage to Robert Hooke (1635–1703): new insights from the recently discovered Hooke Folio, Perspect. Biol. Med., 2009, vol. 52, no. 3, pp. 392–399. https://doi.org/10.1353/pbm.0.0096

  59. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.-Yu., Algire, M.A., Benders, G.A., Montague, M.G., Ma, Li, Moodie, M.M., Merryman, Ch., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E.A., Young, L., Qi, Zh.-Q., Segall-Shapiro, T.H., Calvey, C.H., Parmar, P.P., Hutchison, C.A., Smith, H.O., and Venter, J., Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 2010, vol. 329, no. 5987, pp. 52–56. https://doi.org/10.1126/science.1190719

    Article  CAS  PubMed  Google Scholar 

  60. Gilbert, W., Origin of life: The RNA world, Nature, 1986, vol. 319, pp. 618–618. https://doi.org/10.1038/319618a0

    Article  Google Scholar 

  61. Griffith, F., The significance of pneumococcal types, Epidemiol. Infect., 1928, vol. 27, no. 2, pp. 113–159.

    CAS  Google Scholar 

  62. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S., The RNA moiety of ribonuclease p is the catalytic subunit of the enzyme, Cell, 1983, vol. 35, no. 3, pp. 849–857. https://doi.org/10.1016/0092-8674(83)90117-4

    Article  CAS  PubMed  Google Scholar 

  63. Haldane, J.B.S., A mathematical theory of natural and artificial selection. Part IX. Rapid selection, Math. Proc. Camb. Philos. Soc., 1932, vol. 28, no. 2, pp. 244–248.

    Article  Google Scholar 

  64. Haldane, J.B.S., The Causes of Evolution, Princeton: Princeton Univ., 1949.

    Google Scholar 

  65. Haldane, J.B.S., The cost of natural selection, J. Genet., 1957, vol. 55, no. 3, pp. 511–524. https://doi.org/ 725https://doi.org/10.1007/BF02984069

  66. Hales, K.G., Korey, C.A., Larracuente, A.M., and Roberts, D.M., Genetics on the fly: a primer on the drosophila model system, Genetics, 2015, vol. 201, no. 3, pp. 815–842. https://doi.org/10.1534/genetics.115.183392728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hershey, A.D. and Chase, M., Independent functions of viral protein and nucleic acid in growth of bacteriophage, J. Gen. Physiol., 1952, vol. 36, no. 1, pp. 39–56. https://doi.org/10.1085/jgp.36.1.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoagland, M.B., Stephenson, M.L., Scott, J.F., Hecht, L.I., and Zamecnik, P.C., A soluble ribonucleic acid intermediate in protein synthesis, J. Biol. Chem., 1958, vol. 231, no. 1, pp. 241–257. https://doi.org/10.1016/S0021-9258(19)77302-5

    Article  CAS  PubMed  Google Scholar 

  69. Holley, R.W., Everett, G.A., Madison, J.T., and Zamir, A., Nucleotide sequences in the yeast alanine transfer ribonucleic acid, J. Biol. Chem., 1965, vol. 240, pp. 2122–2128. https://doi.org/10.1016/S0021-9258(18)97435-1

    Article  CAS  PubMed  Google Scholar 

  70. Hou, J., Sigwalt, A., Fournier, T., Pflieger, D., Peter, J., de Montigny, J., Dunham, M.J., and Schacherer, J., The hidden complexity of mendelian traits across natural yeast populations, Cell Rep., 2016, vol. 16, no. 4, pp. 1106–1114. https://doi.org/10.1016/j.celrep.2016.06.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Howard, J.C., Why didn’t Darwin discover Mendel’s laws?, J. Biol., 2009, vol. 8, no. 2, p. 15. https://doi.org/10.1186/jbiol123

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hsu, T.C., Mammalian chromosomes in vitro: I. The karyotype of man, J. Hered., 1952, vol. 43, no. 4, pp.167–172.

    Article  Google Scholar 

  73. Huminiecki, Ł., A contemporary message from Mendel’s logical empiricism, BioEssays, 2020, vol. 42, no. 9, p. e2000120. https://doi.org/10.1002/bies.202000120

    Article  PubMed  Google Scholar 

  74. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product, J. Bacteriol., 1987, vol. 169, no. 12, pp. 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jacob, F. and Monod, J., Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol., 1961, vol. 3, pp. 318–356.

    Article  PubMed  Google Scholar 

  76. Jenkin, F., The origin of species, N. Br. Rev., 1867, vol. 46, pp. 277–318.

    Google Scholar 

  77. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity, Science, 2012, vol. 337, no. 6096, pp. 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johannsen, W., The genotype conception of heredity, Am. Nat., 1911, vol. 45, no. 531, pp. 129–159.

    Article  Google Scholar 

  79. Kanaka, K.K., Nidhi Sukhija, Rangasai Chandra Goli, Sanjeev Singh, Indrajit Ganguly, Dixit, S.P., Aishwarya Dash, and Anoop Anand Malik, On the concepts and measures of diversity in the genomics era, Curr. Plant Biol., 2023, vol. 33, p. 100278. https://doi.org/10.1016/j.cpb.2023.100278

    Article  CAS  Google Scholar 

  80. Karikó, K., Buckstein, M., Ni, H., and Weissman, D., Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA, Immunity, 2005, vol. 23, no. 2, pp. 165–175. https://doi.org/10.1016/j.immuni.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  81. Kimura, M., Process leading to quasi-fixation of genes in natural populations due to random fluctuation of selection intensities, Genetics, 1954, vol. 39, no. 3, pp. 280–295. https://doi.org/10.1093/genetics/39.3.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kimura, M., Rare variant alleles in the light of the neutral theory, Mol. Biol. Evol., 1983, vol. 1, no. 1, pp. 84–93. https://doi.org/10.1093/oxfordjournals.molbev.a040305

    Article  CAS  PubMed  Google Scholar 

  83. Kreplak, J., Madoui, M.A., Cápal, P., et al., A reference genome for pea provides insight into legume genome evolution, Nat. Genet., 2019, vol. 51, no. 9, pp. 1411–1422. https://doi.org/10.1038/s41588-019-0480-1

    Article  CAS  PubMed  Google Scholar 

  84. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R., Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena, Cell, 1982, vol. 31, no. 1, pp. 147–157. https://doi.org/10.1016/0092-8674(82)90414-7

    Article  CAS  PubMed  Google Scholar 

  85. Lederberg, J. and Tatum, E.L., Gene recombination in Escherichia coli, Nature, 1946, vol. 158, no. 4016, p. 558. https://doi.org/10.1038/158558a0

    Article  CAS  PubMed  Google Scholar 

  86. Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, vol. 75, no. 5, pp. 843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  87. Leroi, A.M., The Lagoon: How Aristotle Invented Science, London: Bloomsbury, 2014.

    Google Scholar 

  88. Levene, P.A., The structure of yeast nucleic acid: IV, J. Bio-l. Chem., 1919, vol. 40, pp. 415–424. https://doi.org/10.1016/S0021-9258(18)87254-4

    Article  CAS  Google Scholar 

  89. Lockhart, D.J., Dong, H., Byrne, M.C., et al., Expression monitoring by hybridization to high-density oligonucleotide arrays, Nat. Biotechnol., 1996, vol. 14, no. 13, pp. 1675–1680. https://doi.org/10.1038/nbt1296-1675

    Article  CAS  PubMed  Google Scholar 

  90. MacRoberts, M.H., L. H. Bailey’s citations to Gregor Mendel, J. Hered., 1984, vol. 75, no. 6, pp. 500–501. https://doi.org/10.1093/oxfordjournals.jhered.a109997

    Article  CAS  PubMed  Google Scholar 

  91. Maton, A., Cells: Building Blocks of Life, Hoboken: Prentice Hall, 1994.

    Google Scholar 

  92. Maxam, A.M. and Gilbert, W., A new method for sequencing DNA, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 2, pp. 560–564. https://doi.org/10.1073/pnas.74.2.560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mayr, E., Birds Collected during the Whitney South Sea Expedition. 48, Notes on the Polynesian Species of Aplonis, New York: Am. Mus. Nat. Hist., 1942.

    Google Scholar 

  94. Mayr, E., Systematics and the Origin of Species, from the Viewpoint of a Zoologist, Cambridge: Harvard Univ., 1959.

    Google Scholar 

  95. McClintock, B., The origin and behavior of mutable loci in maize, Proc. Natl. Acad. Sci. U. S. A., 1950, vol. 36, no. 6, pp. 344–355. https://doi.org/10.1073/pnas.36.6.344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meissner, F., Geddes-McAlister, J., Mann, M., and Bantscheff, M., The emerging role of mass spectrometry-based proteomics in drug discovery, Nat. Rev. Drug Discovery, 2022, vol. 21, no. 9, pp. 637–654. https://doi.org/10.1038/s41573-022-00409-3

    Article  CAS  PubMed  Google Scholar 

  97. Mendel, G., Experiments in plant hybridization, Verh. Naturforsch. Ver. Brünn, 1865. https://www.mendelweb.org/Mendel.html. Accessed December 25, 2022.

  98. Meselson, M. and Stahl, F.W., The replication of DNA in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1958, vol. 44, no. 7, pp. 671–682. https://doi.org/10.1073/pnas.44.7.671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mittelsten Scheid, O., Mendelian and non-mendelian genetics in model plants, Plant Cell, 2022, vol. 34, no. 7, pp. 2455–2461. https://doi.org/10.1093/plcell/koac070

    Article  PubMed  PubMed Central  Google Scholar 

  100. Morgan, T.H., Random segregation versus coupling in mendelian inheritance, Science, 1911, vol. 34, no. 873, pp. 384–384. https://doi.org/10.1126/science.34.873.384

    Article  CAS  PubMed  Google Scholar 

  101. Morgan, T.H., Bridges, C.B., and Sturtevant, A.H., The Genetics of Drosophila Melanogaster, Biblphia Genet., 1925, vol. 2, Chapter XXII.

    Google Scholar 

  102. Muller, H.J., Artificial transmutation of the gene, Science, 1927, vol. 66, no. 1699, pp. 84–87. https://doi.org/10.1126/science.66.1699.84

  103. Mullis, K.B., The unusual origin of the polymerase chain reaction, Sci. Am., 1990, vol. 262, no. 4, pp. 56–65. https://doi.org/10.1038/scientificamerican0490-56

    Article  CAS  PubMed  Google Scholar 

  104. Nielsen, R., Molecular signatures of natural selection, Annu. Rev. Genet., 2005, vol. 39, pp. 197–218. https://doi.org/10.1146/annurev.genet.39.073003.112420

    Article  CAS  PubMed  Google Scholar 

  105. Noble, C., Olejarz, J., Esvel, K.M., Church, G.M., and Nowak, M.A., Evolutionary dynamics of CRISPR gene drives, Sci. Adv., 2017, vol. 3, no. 4, p. e1601964. https://doi.org/10.1126/sciadv.1601964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nogler, G.A., The lesser-known Mendel: his experiments on Hieracium, Genetics, 2006, vol. 172, no. 1, pp. 1–6. https://doi.org/10.1093/genetics/172.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  107. Novitski, E. and Blixt, S., Mendel, linkage, and synteny, BioScience, 1978, vol. 28, no. 1, pp. 34–35. https://doi.org/10.2307/1307484

    Article  CAS  PubMed  Google Scholar 

  108. Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L., and Hofreiter, M., Genetic analyses from ancient DNA, Annu. Rev. Genet., 2004, vol. 38, pp. 645–679. https://doi.org/10.1146/annurev.genet.37.110801.143214

    Article  CAS  PubMed  Google Scholar 

  109. Panet, A., Baltimore, D., and Hanafusa, T., Quantitation of avian RNA tumor virus reverse transcriptase by radioimmunoassay, J. Virol., 1975, vol. 16, no. 1, pp. 146–152. https://doi.org/10.1128/JVI.16.1.146-152.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pantel, K. and Alix-Panabières, C., Circulating tumour cells in cancer patients: challenges and perspectives, Trends Mol. Med., 2010, vol. 16, no. 9, pp. 398–406. https://doi.org/10.1016/j.molmed.2010.07.001

    Article  PubMed  Google Scholar 

  111. Pardue, M.L., and Gall, J.G., Molecular hybridization of radioactive DNA to the DNA of cytological preparations, Proc. Natl. Acad. Sci. U. S. A., 1969, vol. 64, pp. 600–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Paweletz, N., Walther Flemming: pioneer of mitosis research, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, no. 1, pp. 72–75. https://doi.org/10.1038/35048077

    Article  CAS  PubMed  Google Scholar 

  113. Piegorsch, W.W., The Gregor Mendel controversy: early issues of goodness-of-fit and recent issues of genetic linkage, Hist. Sci., 1986, vol. 24, pp. 173–182. https://doi.org/10.1177/007327538602400204

    Article  CAS  PubMed  Google Scholar 

  114. Poczai, P. and Santiago-Blay, J.A., Principles and biological concepts of heredity before Mendel, Biol. Direct, 2021, vol. 16, no. 1, p. 19. https://doi.org/10.1186/s13062-021-00308-4

    Article  PubMed  PubMed Central  Google Scholar 

  115. Radick, G., Beyond the “Mendel-Fisher controversy”, Science, 2015, vol. 350, no. 6257, pp. 159–160. https://doi.org/10.1126/science.aab3846

    Article  PubMed  Google Scholar 

  116. Radick, G., Mendel the fraud? A social history of truth in genetics, Stud. Hist. Philos. Sci., 2022, vol. 93, pp. 39–46. https://doi.org/10.1016/j.shpsa.2021.12.012

    Article  PubMed  Google Scholar 

  117. Reid, J.B. and Ross, J.J., Mendel’s genes: toward a full molecular characterization, Genetics, 2011, vol. 189, no. 1, pp. 3–10. https://doi.org/10.1534/genetics.111.132118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rich, A. and Zhang, S., Z-DNA: the long road to biological function, Nat. Rev. Genet., 2003, vol. 4, no. 7, pp. 566–572. https://doi.org/10.1038/nrg1115

    Article  CAS  PubMed  Google Scholar 

  119. Rode, N.O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V., and Débarre, F., Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks, Conserv. Genet., 2019, vol. 20, no. 4, pp. 671–690. https://doi.org/10.1007/s10592-019-01165-5856

    Article  CAS  Google Scholar 

  120. Sahin, U., Muik, A., Derhovanessian, E., et al., COVID-19 vaccine BNT162b1 elicits human antibody and TH1T cell responses, Nature, 2020, vol. 586, no. 7830, pp. 594–599. https://doi.org/10.1038/s41586-020-2814-7

    Article  CAS  PubMed  Google Scholar 

  121. Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scherrer, K. and Jost, J., Gene and genon concept: coding versus regulation, Theor. Biosci., 2007, vol. 126, pp. 65–113. https://doi.org/10.1007/s12064-007-0012-x

    Article  CAS  Google Scholar 

  123. Schwann, T.H., Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants, Moscow: Ripol Classic, 1847.

    Book  Google Scholar 

  124. Searle, J.B. and de Villena, F.P.-M., The evolutionary significance of meiotic drive, Heredity, 2022, vol. 129, no. 1, pp. 44–47. https://doi.org/10.1038/s41437-022-00534-0

    Article  PubMed  PubMed Central  Google Scholar 

  125. Secord, J.A., Nature’s fancy: Charles Darwin and the breeding of pigeons, Isis, 1981, vol. 72, pp. 163–186. https://doi.org/10.1086/352717

    Article  Google Scholar 

  126. Simpson, G.G., Tempo and Mode in Evolution (No. 15), New York: Columbia Univ., 1944.

    Google Scholar 

  127. Smith, H.O. and Wilcox, K.W., A Restriction enzyme from Hemophilus influenzae: I. Purification and general Properties, J. Mol. Biol., 1970, vol. 51, no. 2, pp. 379–391. https://doi.org/10.1016/0022-2836(70)90149-x

    Article  CAS  PubMed  Google Scholar 

  128. Smýkal, P., Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery, Czech J. Genet. Plant Breed., 2014, vol. 50, pp. 52–64. https://doi.org/10.17221/2/2014-CJGPB

    Article  Google Scholar 

  129. Smýkal, P., Varshney, R.K., Singh, V.K., Coyne, C.J., Domoney, C., Kejnovský, E., and Warkentin, T., From Mendel’s discovery on pea to today’s plant genetics and breeding: commemorating the 150th anniversary of the reading of Mendel’s discovery, Theor. Appl. Genet., 2016, vol. 129, no. 12, pp. 2267–2280. https://doi.org/10.1007/s00122-016-2803-2

    Article  CAS  PubMed  Google Scholar 

  130. Stenseth, N.C., Andersson, L., and Hoekstra, H.E., Gregor Johann Mendel and the development of modern evolutionary biology, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 30. p. e2201327119. https://doi.org/10.1073/pnas.2201327119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sturtevant, A.H., The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association, J. Exp. Zool., 1913, vol. 14, no.1, pp. 43–59. https://doi.org/10.1002/jez.1400140104

    Article  Google Scholar 

  132. Sussmilch, F.C., Ross, J.J., and Reid, J.B., Mendel: from genes to genome, Plant Physiol., 2022, vol. 190, pp. 2103–2114. https://doi.org/10.1093/plphys/kiac424

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sutton, W.S., The chromosomes in heredity, Biol. Bull., 1903, vol. 4, no. 5, pp. 231–250. https://doi.org/10.2307/1535741

    Article  Google Scholar 

  134. Temin, H.M., Homology between RNA from Rous sarcoma virus and DNA from Rous sarcoma virus-infected cells, Proc. Natl. Acad. Sci. U. S. A., 1964, vol. 52, no. 2, pp. 323–329. https://doi.org/10.1073/pnas.52.2.323

  135. Tijo, J.H. and Levan, A., Human chromosomes, Hereditas, 1956, vol. 42, pp. 1–6.

    Google Scholar 

  136. Tonegawa, S., Somatic generation of antibody diversity, Nature, 1983, vol. 302, no. 5909, pp. 575–581. https://doi.org/10.1038/302575a0

    Article  CAS  PubMed  Google Scholar 

  137. Tschermak, E., Über künstliche kreuzung bei Pisum sativum, Ber. Dtsch. Bot. Ges., 1900, vol. 18, pp. 232–239.

    Article  Google Scholar 

  138. Van Dijk, P.J., Jessop, A.P., and Ellis, T.H.N., How did Mendel arrive at his discoveries?, Nat. Genet., 2022, vol. 54, no. 7, pp. 926–933. https://doi.org/10.1038/s41588-022-01109-9

    Article  CAS  PubMed  Google Scholar 

  139. Vecerek, O., Johann Gregor Mendel as a beekeeper, Bee World, 1965, vol. 46, no. 3, pp. 86–96. https://doi.org/10.1080/0005772X.1965.11095345

    Article  Google Scholar 

  140. Virchow, R., Cellular Pathology, London: J & A Churchill, 1860.

    Google Scholar 

  141. Volkov, R.A. and Rudenko, S.S., War and world of Erwin Chargaff (Dedicated to 110th anniversary of birth), Cyto-l. Genet., 2016, vol. 50, pp. 72–78. https://doi.org/10.3103/S0095452716010102

    Article  Google Scholar 

  142. Waddington, C.H., The Epigenotype, Endeavour, 1942, vol. 1, pp. 18–20.

    Google Scholar 

  143. Wallace, A.R., On the law which has regulated the introduction of new species, Ann. Mag. Nat. Hist., 1855, vol. 16, no. 93, pp. 184–196.

    Article  Google Scholar 

  144. Weeden, N.F., Are Mendel’s data reliable? The perspective of a Pea geneticist, J. Hered., 2016, vol. 107, no. 7, pp. 635–646. https://doi.org/10.1093/jhered/esw058

    Article  PubMed  Google Scholar 

  145. Weiling, F., What about R. A. Fisher’s statement of the “too good” data of J. G. Mendel’s Pisum paper?, J. Hered., 1986, vol. 77, no. 4, pp. 281–283. https://doi.org/10.1093/oxfordjournals.jhered.a110239

    Article  CAS  PubMed  Google Scholar 

  146. Weldon, W.F.R., Mendel’s laws of alternative inheritance in peas, Biometrika, 1902, vol. 1, pp. 228–233. https://doi.org/10.1093/biomet/1.2.228

    Article  Google Scholar 

  147. Whittaker, C. and Dean, C., The FLC locus: A Platform for discoveries in epigenetics and adaptation, Ann. Rev. Cell Dev. Biol., 2017, vol. 33, pp. 555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546

    Article  CAS  Google Scholar 

  148. Wolf, J.B., Ferguson-Smith, A.C., and Lorenz, A., Mendel’s laws of heredity on his 200th birthday: What have we learned by considering exceptions?, Heredity, 2022, vol. 129, no. 1, pp. 1–3. https://doi.org/10.1038/s41437-022-00552-y

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wright, S., Evolution in Mendelian populations, Genetics, 1931, vol. 16, no. 2, pp. 97–159. https://doi.org/10.1093/genetics/16.2.97

  150. Wright, S., The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Proceedings of the Sixth International Congress on Genetics, 1932, pp. 356–366.

  151. Wright, S., Dispersion of Drosophila pseudoobscura, Am. Nat., 1968, vol. 102, no. 923, pp. 81–84.

    Article  Google Scholar 

  152. Yasashimoto, T., Sakata, M.K., Sakita, T., Nakajima, S., Ozaki, M., and Minamoto, T., Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples, Sci. Rep., 2021, vol. 11, no. 1, p. 10712. https://doi.org/10.1038/s41598-021-89993-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zinder, N.D. and Lederberg, J., Genetic exchange in Salmonella, J. Bacteriol., 1952, vol. 64, no. 5, pp. 679–699. https://doi.org/10.1128/jb.64.5.679-699.1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nidhi Sukhija and K.K. Kanaka contributed equally to this work.

Corresponding author

Correspondence to Anoop Anand Malik.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhija, N., Kanaka, K.K., Purohit, P.B. et al. Mendelism: Connecting the Dots Across Centuries. Cytol. Genet. 57, 500–516 (2023). https://doi.org/10.3103/S0095452723050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723050067

Navigation