Skip to main content
Log in

Remodeling the Architecture of Collagen-Containing Connective Tissue Fibers of Metastatic Prostate Cancer

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 04 December 2023

This article has been updated

Abstract

The morphological study was aimed at determining the role of fibrillar organization of the collagen-containing connective tissue of prostate cancer at the stage of neoplastic proliferation, including metastatic spreading into bone tissue. The histological material of 55 patients with prostate cancer, Gleason six to nine malignancy score, without neoplastic proliferation and with metastases into bones, was used. The architectural specificities of collagen-containing connective tissue of neoplasms were determined using Van Gieson’s method. It was found that the remodeling of collagen-containing connective tissue around the epithelial tumor structures with aggressive prostate cancer (Gleason score of eight to nine) resulted in the increase in the percentage of extended and flattened fibrils as compared to curved fibrils; the adjacent and surrounding stroma was notable for the enlarged total area of collagen-containing fibrils, manifestations of desmoplasia, compactization of the location, widening, flattening, and extending. The data obtained demonstrate that the remodeling of collagen-containing connective tissue components of prostate cancer conditions unrestricted migration and invasion of tumor cells, including those expressing the proteins involved in bone tissue remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Change history

REFERENCES

  1. Angel, P.A. and Zambrzycki, S.C., Predictive value of collagen in cancer, Adv. Cancer Res., 2022, vol. 154, pp. 15–45. https://doi.org/10.1016/bs.acr.2022.02.004

    Article  CAS  PubMed  Google Scholar 

  2. Angel, P.M., Spruill, L., Jefferson, M., et al., Zonal regulation of collagen-type proteins and post-translational modifications in prostatic benign and cancer tissues by imaging mass spectrometry, Prostate, 2020, vol. 80, no. 13, pp. 1071–1086. https://doi.org/10.1002/pros.24031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Badaoui, M., Mimsy-Julienne, C., Saby, Ch., et al., Collagen type 1 promotes survival of human breast cancer cells by overexpressing Kv10.1 potassium and Orai1 calcium channels through DDR1-dependent pathway, Oncotarget, 2018, vol. 9, no. 37, pp. 24653–24671. https://doi.org/10.18632/oncotarget.19065

    Article  PubMed  Google Scholar 

  4. Bodelon, C., Mullooly, M., Pfeiffer, R.M., et al., Mammary collagen architecture and its association with mammographic density and lesion severity among women undergoing image-guided breast biopsy, Breast Cancer Res., 2021, vol. 23, p. 105. https://doi.org/10.1186/s13058-021-01482-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drifka, C.R., Loeffler, A.G., Mathewson, K., et al., Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection, Oncotarget, 2016, vol. 7, no. 46, pp. 76197–76213. https://doi.org/10.18632/oncotarget.12772

    Article  PubMed  PubMed Central  Google Scholar 

  6. Epstein, J.I., Egevad, L., Amin, M.B., et al., The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system, Am. J. Surg. Pathol., 2016, vol. 40, no. 2, pp. 244–252. https://doi.org/10.1097/pas.0000000000000530

    Article  PubMed  Google Scholar 

  7. Fang, M., Yuan, J., Peng, Ch., and Li, Yu., Collagen as a double-edged sword in tumor progression, Tumor Biol., 2014, vol. 35, no. 4, pp. 2871–2882. https://doi.org/10.1007/s13277-013-1511-7

    Article  CAS  Google Scholar 

  8. Garcia, A.M., Magalhes, F.L., Soares, J.S., et al., Second harmonic generation imaging of the collagen architecture in prostate cancer tissue, Biomed. Phys. Eng., 2018, vol. 4, p. 025026. https://doi.org/10.1088/2057-1976/aaa379

    Article  Google Scholar 

  9. Gleason, D.F. and Mellinger, G.T., Classification of prostatic carcinomas, Cancer Chemother. Rep., 1966, vol. 50, no. 3, pp. 125–128.

    CAS  PubMed  Google Scholar 

  10. Gole, L., Yeong, J., Lim, J.Ch.T., et al., Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients, Breast Cancer Res., 2020, vol. 22. https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-020-01282-x.

  11. Guillaumin, J.-B., Djerroudi, L., Aubry, J.-F., et al., Proof of concept of 3-d backscatter tensor imaging tomography for non-invasive assessment of Human Breast Cancer Collagen Organization, Ultrasound Med. Biol., 2022, vol. 48, no. 9, pp. 1867–1878.

    Article  PubMed  Google Scholar 

  12. Necula, L., Matei, L., Dragu, D., et al., Collagen family as promising biomarkers and therapeutic targets in cancer, Int. J. Mol. Sci., 2022, vol. 23, p. 12415. https://doi.org/10.3390/ijms232012415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ouellette, J.N., Drifka, C.R., Pointer, K.B., et al., Navigating the collagen jungle: The biomedical potential of Fiber Organization in Cancer, Bioengineering (Basel), 2021, vol. 8, no. 2, p. 17. https://doi.org/10.3390/bioengineering8020017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pavlova, I.P., Nair, S.S., Lundon, D., et al., Multiphoton Microscopy for identifying collagen signatures associated with biochemical recurrence in prostate cancer patients, J. Pers. Med., 2021, vol. 11, no. 11, p. 1061. https://doi.org/10.3390/jpm11111061

    Article  PubMed  PubMed Central  Google Scholar 

  15. Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., et al., Collagen reorganization at the tumor-stromal interface facilitates local invasion, BMC Med., 2006, vol. 4, no. 1, p. 38. https://doi.org/10.1186/1741-7015-4-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rømer, A.M., Thorseth, M.L., and Hargbøl, D., Immune modulatory properties of collagen in cancer, Front. Immunol., 2021, vol. 12, p. 791453. https://doi.org/10.3389/fimmu.2021.791453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah, R.B., Current perspectives on the Gleason grading of prostate cancer, Arch. Pathol. Lab. Med., 2009, vol. 133, no. 11, pp. 1810–1816. https://doi.org/10.5858/133.11.1810

    Article  PubMed  Google Scholar 

  18. Song, K., Yu, Z., Zu, X., et al., Collagen remodeling along cancer progression providing a novel opportunity for cancer diagnosis and treatment, Int. J. Mol. Sci., 2022, vol. 23, no. 18, p. 10509. https://doi.org/10.3390/ijms231810509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taufalele, P.V., VanderBurgh, J.A., Muñoz, A., et al., Fiber alignment drives changes in architectural and mechanical features in collagen matrices, PLoS, 2019. https://doi.org/10.1371/journal.pone.0216537

  20. Xi, G., Guo, W., Kang, D., et al., Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients, Theranostics, 2021, vol. 11, no. 7, pp. 3229–3243. https://doi.org/10.7150/thno.55921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xi, G., Qiu, L., Xu, S., et al., Computer-assisted quantification of tumor-associated collagen signatures to improve the prognosis prediction of breast cancer, BMC Med., 2021, vol. 19, p. 273. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-021-02146-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yavuz, B.G., Pestana, R.C., Abugabal, Y.I., et al., Origin and role of hepatic myofibroblasts in hepatocellular carcinoma, Oncotarget, 2020, vol. 11, pp. 1186–1201. https://doi.org/10.18632/oncotarget.27532

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zainab, H. and Sultana, A., Shaimaa. Stromal desmoplasia as a possible prognostic indicator in different grades of oral squamous cell carcinoma, Int. J. Oral Maxillofac. Pathol., 2019, vol. 23, no. 3, pp. 338–343. https://doi.org/10.4103/jomfp.JOMFP_136_19

    Article  Google Scholar 

  24. Zhang, J., Liu, J., Zhang, H., et al., The role of network-forming collagens in cancer progression, Int. J. Cancer, 2022, vol. 151, no. 15, pp. 833–842. https://doi.org/10.1002/ijc.34004

    Article  CAS  PubMed  Google Scholar 

  25. Zundera, S.M., Gelderblom, H., Tollenaara, R.A., and Mesker, W.E., The significance of stromal collagen organization in cancer tissue: An in-depth discussion of literature, Crit. Rev. Oncol./Hematol., 2020, vol. 151, p. 102907. https://doi.org/10.1016/j.critrevonc.2020.102907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Naleskina, N. Yu. Lukianova, T. V. Zadvornyi, L. M. Kunska, O. M. Mushii or V. F. Chekhun.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by V. Mittova

The original online version of this article was revised: Modifications have been made to the Affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naleskina, L.A., Lukianova, N.Y., Zadvornyi, T.V. et al. Remodeling the Architecture of Collagen-Containing Connective Tissue Fibers of Metastatic Prostate Cancer. Cytol. Genet. 57, 406–412 (2023). https://doi.org/10.3103/S0095452723050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723050031

Navigation